IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0235147.html
   My bibliography  Save this article

Feature sensitivity criterion-based sampling strategy from the Optimization based on Phylogram Analysis (Fs-OPA) and Cox regression applied to mental disorder datasets

Author

Listed:
  • Fatemeh Gholi Zadeh Kharrat
  • Newton Shydeo Brandão Miyoshi
  • Juliana Cobre
  • João Mazzoncini De Azevedo-Marques
  • Paulo Mazzoncini de Azevedo-Marques
  • Alexandre Cláudio Botazzo Delbem

Abstract

Digital datasets in several health care facilities, as hospitals and prehospital services, accumulated data from thousands of patients for more than a decade. In general, there is no local team with enough experts with the required different skills capable of analyzing them in entirety. The integration of those abilities usually demands a relatively long-period and is cost. Considering that scenario, this paper proposes a new Feature Sensitivity technique that can automatically deal with a large dataset. It uses a criterion-based sampling strategy from the Optimization based on Phylogram Analysis. Called FS-opa, the new approach seems proper for dealing with any types of raw data from health centers and manipulate their entire datasets. Besides, FS-opa can find the principal features for the construction of inference models without depending on expert knowledge of the problem domain. The selected features can be combined with usual statistical or machine learning methods to perform predictions. The new method can mine entire datasets from scratch. FS-opa was evaluated using a relatively large dataset from electronic health records of mental disorder prehospital services in Brazil. Cox’s approach was integrated to FS-opa to generate survival analysis models related to the length of stay (LOS) in hospitals, assuming that it is a relevant aspect that can benefit estimates of the efficiency of hospitals and the quality of patient treatments. Since FS-opa can work with raw datasets, no knowledge from the problem domain was used to obtain the preliminary prediction models found. Results show that FS-opa succeeded in performing a feature sensitivity analysis using only the raw data available. In this way, FS-opa can find the principal features without bias of an inference model, since the proposed method does not use it. Moreover, the experiments show that FS-opa can provide models with a useful trade-off according to their representativeness and parsimony. It can benefit further analyses by experts since they can focus on aspects that benefit problem modeling.

Suggested Citation

  • Fatemeh Gholi Zadeh Kharrat & Newton Shydeo Brandão Miyoshi & Juliana Cobre & João Mazzoncini De Azevedo-Marques & Paulo Mazzoncini de Azevedo-Marques & Alexandre Cláudio Botazzo Delbem, 2020. "Feature sensitivity criterion-based sampling strategy from the Optimization based on Phylogram Analysis (Fs-OPA) and Cox regression applied to mental disorder datasets," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-25, July.
  • Handle: RePEc:plo:pone00:0235147
    DOI: 10.1371/journal.pone.0235147
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235147
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0235147&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0235147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Hainan & Xie, Yue & Jiang, Bowen & Tang, Jiafu, 2024. "When outpatient appointment meets online consultation: A joint scheduling optimization framework," Omega, Elsevier, vol. 127(C).
    2. Tugba Cayirli & Pinar Dursun & Evrim D. Gunes, 2019. "An integrated analysis of capacity allocation and patient scheduling in presence of seasonal walk-ins," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 524-561, June.
    3. Wenjuan Fan & Yi Wang & Tongzhu Liu & Guixian Tong, 2020. "A patient flow scheduling problem in ophthalmology clinic solved by the hybrid EDA–VNS algorithm," Journal of Combinatorial Optimization, Springer, vol. 39(2), pages 547-580, February.
    4. Aditya Shetty & Harry Groenevelt & Vera Tilson, 2023. "Intraday dynamic rescheduling under patient no-shows," Health Care Management Science, Springer, vol. 26(3), pages 583-598, September.
    5. Shahab Sadri & Arsalan Paleshi & Lihui Bai & Monica Gentili, 2024. "A Simulation Study for a Safe Reopening and Operation of the Trager Institute Optimal Aging Clinic During the COVID-19 Pandemic," Interfaces, INFORMS, vol. 54(2), pages 188-204, March.
    6. Isabel Kaluza & Guido Voigt & Knut Haase & Antonia Dietze, 2024. "Control of Online-Appointment Systems When the Booking Status Signals Quality of Service," Schmalenbach Journal of Business Research, Springer, vol. 76(3), pages 397-432, September.
    7. Andrés Miniguano-Trujillo & Fernanda Salazar & Ramiro Torres & Patricio Arias & Koraima Sotomayor, 2021. "An integer programming model to assign patients based on mental health impact for tele-psychotherapy intervention during the Covid–19 emergency," Health Care Management Science, Springer, vol. 24(2), pages 286-304, June.
    8. Eduardo Pérez, 2022. "An Appointment Planning Algorithm for Reducing Patient Check-In Waiting Times in Multispecialty Outpatient Clinics," SN Operations Research Forum, Springer, vol. 3(3), pages 1-22, September.
    9. Tito Homem-de-Mello & Qingxia Kong & Rodrigo Godoy-Barba, 2022. "A Simulation Optimization Approach for the Appointment Scheduling Problem with Decision-Dependent Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2845-2865, September.
    10. Serhat Gul, 2018. "A Stochastic Programming Approach for Appointment Scheduling Under Limited Availability of Surgery Turnover Teams," Service Science, INFORMS, vol. 10(3), pages 277-288, September.
    11. Shehadeh, Karmel S. & Cohn, Amy E.M. & Epelman, Marina A., 2019. "Analysis of models for the Stochastic Outpatient Procedure Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 279(3), pages 721-731.
    12. Setareh Boshrouei Shargh & Mostafa Zandieh & Ashkan Ayough & Farbod Farhadi, 2024. "Scheduling in services: a review and bibliometric analysis," Operations Management Research, Springer, vol. 17(2), pages 754-783, June.
    13. Tugba Cayirli & Kum Khiong Yang, 2019. "Altering the Environment to Improve Appointment System Performance," Service Science, INFORMS, vol. 11(2), pages 138-154, June.
    14. Shehadeh, Karmel S. & Cohn, Amy E.M. & Jiang, Ruiwei, 2020. "A distributionally robust optimization approach for outpatient colonoscopy scheduling," European Journal of Operational Research, Elsevier, vol. 283(2), pages 549-561.
    15. Hesaraki, Alireza F. & Dellaert, Nico P. & de Kok, Ton, 2019. "Generating outpatient chemotherapy appointment templates with balanced flowtime and makespan," European Journal of Operational Research, Elsevier, vol. 275(1), pages 304-318.
    16. Karmel S. Shehadeh & Amy E. M. Cohn & Ruiwei Jiang, 2021. "Using stochastic programming to solve an outpatient appointment scheduling problem with random service and arrival times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 89-111, February.
    17. T. Meersman & B. Maenhout, 2022. "Multi-objective optimisation for constructing cyclic appointment schedules for elective and urgent patients," Annals of Operations Research, Springer, vol. 312(2), pages 909-948, May.
    18. Sebastian Kling & Sebastian Kraul & Jens O. Brunner, 2024. "Customized GRASP for rehabilitation therapy scheduling with appointment priorities and accounting for therapist satisfaction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 821-872, September.
    19. Jiang, Yangzi & Abouee-Mehrizi, Hossein & Diao, Yuhe, 2020. "Data-driven analytics to support scheduling of multi-priority multi-class patients with wait time targets," European Journal of Operational Research, Elsevier, vol. 281(3), pages 597-611.
    20. Paola Cappanera & Filippo Visintin & Carlo Banditori & Daniele Feo, 2019. "Evaluating the long-term effects of appointment scheduling policies in a magnetic resonance imaging setting," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 212-254, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0235147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.