IDEAS home Printed from https://ideas.repec.org/a/inm/orserv/v10y2018i3p277-288.html
   My bibliography  Save this article

A Stochastic Programming Approach for Appointment Scheduling Under Limited Availability of Surgery Turnover Teams

Author

Listed:
  • Serhat Gul

    (Department of Industrial Engineering, TED University, 06420 Çankaya, Ankara, Turkey)

Abstract

The number and availability of turnover teams may significantly affect the performance of a surgery schedule. We propose a two-stage stochastic integer programming formulation for setting the patient appointment times for surgeries under limited availability of turnover teams. We assume that a surgery schedule has already been created, and study how the schedule may be refined. We consider the durations of surgical operation and turnover to be random variables. The objective is to minimize the competing criteria of expected patient waiting time and operating room idle time. We discuss an implementation of a heuristic to generate near-optimal surgery schedules. We conduct numerical experiments using data from a large hospital. We compare the heuristic with a well-known and practical procedure used in earlier studies for setting patient appointment times for surgeries. Finally, we evaluate the impact of the number of turnover teams into the surgery schedules with respect to performance criteria of interest.

Suggested Citation

  • Serhat Gul, 2018. "A Stochastic Programming Approach for Appointment Scheduling Under Limited Availability of Surgery Turnover Teams," Service Science, INFORMS, vol. 10(3), pages 277-288, September.
  • Handle: RePEc:inm:orserv:v:10:y:2018:i:3:p:277-288
    DOI: serv.2018.0214
    as

    Download full text from publisher

    File URL: https://doi.org/serv.2018.0214
    Download Restriction: no

    File URL: https://libkey.io/serv.2018.0214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chrwan-Jyh Ho & Hon-Shiang Lau, 1992. "Minimizing Total Cost in Scheduling Outpatient Appointments," Management Science, INFORMS, vol. 38(12), pages 1750-1764, December.
    2. Zheng Zhang & Xiaolan Xie, 2015. "Simulation-based optimization for surgery appointment scheduling of multiple operating rooms," IISE Transactions, Taylor & Francis Journals, vol. 47(9), pages 998-1012, September.
    3. Lee, Sangbok & Yih, Yuehwern, 2014. "Reducing patient-flow delays in surgical suites through determining start-times of surgical cases," European Journal of Operational Research, Elsevier, vol. 238(2), pages 620-629.
    4. Brian Denton & James Viapiano & Andrea Vogl, 2007. "Optimization of surgery sequencing and scheduling decisions under uncertainty," Health Care Management Science, Springer, vol. 10(1), pages 13-24, February.
    5. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    6. S. Ayca Erdogan & Brian Denton, 2013. "Dynamic Appointment Scheduling of a Stochastic Server with Uncertain Demand," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 116-132, February.
    7. Camilo Mancilla & Robert Storer, 2012. "A sample average approximation approach to stochastic appointment sequencing and scheduling," IISE Transactions, Taylor & Francis Journals, vol. 44(8), pages 655-670.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    2. Bozkir, Cem D.C. & Ozmemis, Cagri & Kurbanzade, Ali Kaan & Balcik, Burcu & Gunes, Evrim D. & Tuglular, Serhan, 2023. "Capacity planning for effective cohorting of hemodialysis patients during the coronavirus pandemic: A case study," European Journal of Operational Research, Elsevier, vol. 304(1), pages 276-291.
    3. Nur Banu Demir & Serhat Gul & Melih Çelik, 2021. "A stochastic programming approach for chemotherapy appointment scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 112-133, February.
    4. Lisa M. Maillart & Maria E. Mayorga, 2018. "Introduction to the Special Issue on Advancing Health Services," Service Science, INFORMS, vol. 10(3), pages 1-1, September.
    5. Çelik, Batuhan & Gul, Serhat & Çelik, Melih, 2023. "A stochastic programming approach to surgery scheduling under parallel processing principle," Omega, Elsevier, vol. 115(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    2. Çelik, Batuhan & Gul, Serhat & Çelik, Melih, 2023. "A stochastic programming approach to surgery scheduling under parallel processing principle," Omega, Elsevier, vol. 115(C).
    3. Shehadeh, Karmel S. & Cohn, Amy E.M. & Epelman, Marina A., 2019. "Analysis of models for the Stochastic Outpatient Procedure Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 279(3), pages 721-731.
    4. Esmaeil Keyvanshokooh & Pooyan Kazemian & Mohammad Fattahi & Mark P. Van Oyen, 2022. "Coordinated and Priority‐Based Surgical Care: An Integrated Distributionally Robust Stochastic Optimization Approach," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1510-1535, April.
    5. Pan, Xingwei & Geng, Na & Xie, Xiaolan & Wen, Jing, 2020. "Managing appointments with waiting time targets and random walk-ins," Omega, Elsevier, vol. 95(C).
    6. Roland Braune & Walter J. Gutjahr & Petra Vogl, 2022. "Stochastic radiotherapy appointment scheduling," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(4), pages 1239-1277, December.
    7. Wu, Xueqi & Zhou, Shenghai, 2022. "Sequencing and scheduling appointments on multiple servers with stochastic service durations and customer arrivals," Omega, Elsevier, vol. 106(C).
    8. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    9. Shenghai Zhou & Yichuan Ding & Woonghee Tim Huh & Guohua Wan, 2021. "Constant Job‐Allowance Policies for Appointment Scheduling: Performance Bounds and Numerical Analysis," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2211-2231, July.
    10. Pan, Xingwei & Geng, Na & Xie, Xiaolan, 2021. "Appointment scheduling and real-time sequencing strategies for patient unpunctuality," European Journal of Operational Research, Elsevier, vol. 295(1), pages 246-260.
    11. Creemers, Stefan & Lambrecht, Marc R. & Beliën, Jeroen & Van den Broeke, Maud, 2021. "Evaluation of appointment scheduling rules: A multi-performance measurement approach," Omega, Elsevier, vol. 100(C).
    12. Eun, Joonyup & Kim, Sang-Phil & Yih, Yuehwern & Tiwari, Vikram, 2019. "Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches," Omega, Elsevier, vol. 86(C), pages 137-153.
    13. Yifei Sun & Usha Nandini Raghavan & Vikrant Vaze & Christopher S Hall & Patricia Doyle & Stacey Sullivan Richard & Christoph Wald, 2021. "Stochastic programming for outpatient scheduling with flexible inpatient exam accommodation," Health Care Management Science, Springer, vol. 24(3), pages 460-481, September.
    14. Yun Zhou & Mahmut Parlar & Vedat Verter & Shannon Fraser, 2021. "Surgical Scheduling with Constrained Patient Waiting Times," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3253-3271, September.
    15. Nur Banu Demir & Serhat Gul & Melih Çelik, 2021. "A stochastic programming approach for chemotherapy appointment scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 112-133, February.
    16. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    17. Jiang, Bowen & Tang, Jiafu & Yan, Chongjun, 2019. "A stochastic programming model for outpatient appointment scheduling considering unpunctuality," Omega, Elsevier, vol. 82(C), pages 70-82.
    18. Miao Bai & Robert H. Storer & Gregory L. Tonkay, 2022. "Surgery Sequencing Coordination with Recovery Resource Constraints," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1207-1223, March.
    19. Huaxin Qiu & Dujuan Wang & Yanzhang Wang & Yunqiang Yin, 2019. "MRI appointment scheduling with uncertain examination time," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 62-82, January.
    20. Soltani, Mohamad & Samorani, Michele & Kolfal, Bora, 2019. "Appointment scheduling with multiple providers and stochastic service times," European Journal of Operational Research, Elsevier, vol. 277(2), pages 667-683.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orserv:v:10:y:2018:i:3:p:277-288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.