IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0233080.html
   My bibliography  Save this article

A Gull Alpha Power Weibull distribution with applications to real and simulated data

Author

Listed:
  • Muhammad Ijaz
  • Syed Muhammad Asim
  • Alamgir
  • Muhammad Farooq
  • Sajjad Ahmad Khan
  • Sadaf Manzoor

Abstract

In this paper, we produced a new family of distribution called Gull Alpha Power Family of distributions (GAPF). A Special case of GAPF is derived by considering the Weibull distribution as a baseline distribution called Gull Alpha Power Weibull distribution (GAPW). The suitability of the proposed distribution derives from its ability to model both the monotonic and non-monotonic hazard rate functions which are a common practice in survival analysis and reliability engineering. Various statistical properties were derived in addition to their special cases. The unknown parameters of the model are estimated using the maximum likelihood method. Moreover, the usefulness of the proposed distribution is supported by using two real lifetime data sets as well as simulated data.

Suggested Citation

  • Muhammad Ijaz & Syed Muhammad Asim & Alamgir & Muhammad Farooq & Sajjad Ahmad Khan & Sadaf Manzoor, 2020. "A Gull Alpha Power Weibull distribution with applications to real and simulated data," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.
  • Handle: RePEc:plo:pone00:0233080
    DOI: 10.1371/journal.pone.0233080
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233080
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0233080&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0233080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2007. "A flexible Weibull extension," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 719-726.
    2. Al-Hasan, Mohammed & Nigmatullin, Raoul R., 2003. "Identification of the generalized Weibull distribution in wind speed data by the Eigen-coordinates method," Renewable Energy, Elsevier, vol. 28(1), pages 93-110.
    3. George C. Canavos & Chris P. Taokas, 1973. "Bayesian Estimation of Life Parameters in the Weibull Distribution," Operations Research, INFORMS, vol. 21(3), pages 755-763, June.
    4. Gauss M. Cordeiro & Morad Alizadeh & Thiago G. Ramires & Edwin M. M. Ortega, 2017. "The generalized odd half-Cauchy family of distributions: Properties and applications," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(11), pages 5685-5705, June.
    5. Ayman Alzaatreh & Carl Lee & Felix Famoye & Indranil Ghosh, 2016. "The generalized Cauchy family of distributions with applications," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    6. Sanku Dey & Vikas Kumar Sharma & Mhamed Mesfioui, 2017. "A New Extension of Weibull Distribution with Application to Lifetime Data," Annals of Data Science, Springer, vol. 4(1), pages 31-61, March.
    7. T. Huillet & H.-F. Raynaud, 1999. "Rare events in a log-Weibull scenario - Application to earthquake magnitude data," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 12(3), pages 457-469, December.
    8. Alzaatreh, Ayman & Famoye, Felix & Lee, Carl, 2014. "The gamma-normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 67-80.
    9. Almalki, Saad J. & Yuan, Jingsong, 2013. "A new modified Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 164-170.
    10. Artur J. Lemonte & Gauss M. Cordeiro & Edwin M. M. Ortega, 2014. "On the Additive Weibull Distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 43(10-12), pages 2066-2080, May.
    11. Mahmoud Aldeni & Carl Lee & Felix Famoye, 2017. "Families of distributions arising from the quantile of generalized lambda distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alya Al Mutairi & Muhammad Z. Arshad, 2022. "A New Odd Fréchet Lehmann Type II–G Family of Distributions: A Power Function Distribution With Theory and Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(2), pages 1-29, March.
    2. Showkat Ahmad Lone & Tabassum Naz Sindhu & Marwa K. H. Hassan & Tahani A. Abushal & Sadia Anwar & Anum Shafiq, 2023. "Theoretical Structure and Applications of a Newly Enhanced Gumbel Type II Model," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    3. Sajid Hussain & Mahmood Ul Hassan & Muhammad Sajid Rashid & Rashid Ahmed, 2023. "Families of Extended Exponentiated Generalized Distributions and Applications of Medical Data Using Burr III Extended Exponentiated Weibull Distribution," Mathematics, MDPI, vol. 11(14), pages 1-24, July.
    4. Majdah Badr & Muhammad Ijaz, 2021. "The Exponentiated Exponential Burr XII distribution: Theory and application to lifetime and simulated data," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Ijaz & Wali Khan Mashwani & Samir Brahim Belhaouari, 2020. "A novel family of lifetime distribution with applications to real and simulated data," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-15, October.
    2. Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    4. Emrah Altun & Mustafa Ç. Korkmaz & Mahmoud El-Morshedy & Mohamed S. Eliwa, 2021. "A New Flexible Family of Continuous Distributions: The Additive Odd-G Family," Mathematics, MDPI, vol. 9(16), pages 1-17, August.
    5. Santosh B. Rane & Yahya A.M. Narvel & Niloy Khatua, 2017. "Development of mechanism for mounting secondary isolating contacts (SICs) in air circuit breakers (ACBs) with high operational reliability," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1816-1831, November.
    6. Zeng, Hongtao & Lan, Tian & Chen, Qiming, 2016. "Five and four-parameter lifetime distributions for bathtub-shaped failure rate using Perks mortality equation," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 307-315.
    7. Abba, Badamasi & Wang, Hong & Bakouch, Hassan S., 2022. "A reliability and survival model for one and two failure modes system with applications to complete and censored datasets," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    8. He, Bo & Cui, Weimin & Du, Xiaofeng, 2016. "An additive modified Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 28-37.
    9. Zubair Ahmad & M. Elgarhy & G. G. Hamedani, 2018. "A new Weibull-X family of distributions: properties, characterizations and applications," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-18, December.
    10. Robab Aghazadeh Chakherloo & Mohammad Pourgol-Mohammad & Kamran Sepanloo, 2017. "Change points estimations of bathtub-shaped hazard functions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(3), pages 553-559, September.
    11. Filippo Domma & Francesca Condino & Božidar V. Popović, 2017. "A new generalized weighted Weibull distribution with decreasing, increasing, upside-down bathtub, N-shape and M-shape hazard rate," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(16), pages 2978-2993, December.
    12. Zhou, Chongwen & Chinnam, Ratna Babu & Dalkiran, Evrim & Korostelev, Alexander, 2017. "Bayesian approach to hazard rate models for early detection of warranty and reliability problems using upstream supply chain information," International Journal of Production Economics, Elsevier, vol. 193(C), pages 316-331.
    13. Hadeel S Klakattawi, 2022. "Survival analysis of cancer patients using a new extended Weibull distribution," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.
    14. Braglia, Marcello & Carmignani, Gionata & Frosolini, Marco & Zammori, Francesco, 2012. "Data classification and MTBF prediction with a multivariate analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 27-35.
    15. Hadi Saboori & Ghobad Barmalzan & Seyyed Masih Ayat, 2020. "Generalized Modified Inverse Weibull Distribution: Its Properties and Applications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 247-269, November.
    16. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    17. Showkat Ahmad Lone & Tabassum Naz Sindhu & Marwa K. H. Hassan & Tahani A. Abushal & Sadia Anwar & Anum Shafiq, 2023. "Theoretical Structure and Applications of a Newly Enhanced Gumbel Type II Model," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    18. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2009. "Balancing burn-in and mission times in environments with catastrophic and repairable failures," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1314-1321.
    19. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.
    20. Lucas David Ribeiro-Reis, 2023. "The Log-Logistic Regression Model Under Censoring Scheme," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-12, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0233080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.