IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0232203.html
   My bibliography  Save this article

Study of historical evacuation drill data combining regression analysis and dimensionless numbers

Author

Listed:
  • Maria D Miñambres
  • Diego R Llanos
  • Angel M Gento

Abstract

The time needed to evacuate a building depends on many factors. Some are related to people’s behavior, while others are related to the physical characteristics of the building. This paper analyzes the historical data of 47 evacuation drills in 15 different university buildings, both academic and residential, involving more than 19 000 persons. We propose the study of the data presented using a dimensionless analysis and statistical regression in order to give a prediction of the ratio between exit time and the number of people evacuated. The results obtained show that this approach could be a useful tool for comparing buildings of this type, and that it represents a promising research topic which can also be extended to other types of buildings.

Suggested Citation

  • Maria D Miñambres & Diego R Llanos & Angel M Gento, 2020. "Study of historical evacuation drill data combining regression analysis and dimensionless numbers," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-14, May.
  • Handle: RePEc:plo:pone00:0232203
    DOI: 10.1371/journal.pone.0232203
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232203
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0232203&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0232203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Haghani, Milad & Sarvi, Majid, 2018. "Crowd behaviour and motion: Empirical methods," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 253-294.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xianing Wang & Zhan Zhang & Ying Wang & Jun Yang & Linjun Lu, 2022. "A Study on Safety Evaluation of Pedestrian Flows Based on Partial Impact Dynamics by Real-Time Data in Subway Stations," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    2. Kayvan Aghabayk & Alireza Soltani & Nirajan Shiwakoti, 2022. "Investigating Pedestrians’ Exit Choice with Incident Location Awareness in an Emergency in a Multi-Level Shopping Complex," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    3. Hu, Xiangmin & Chen, Tao & Deng, Kaifeng & Wang, Guanning, 2023. "Effects of aggressiveness on pedestrian room evacuation using extended cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    4. Wang, Xinjian & Liu, Zhengjiang & Loughney, Sean & Yang, Zaili & Wang, Yanfu & Wang, Jin, 2022. "Numerical analysis and staircase layout optimisation for a Ro-Ro passenger ship during emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2019. "When ‘push’ does not come to ‘shove’: Revisiting ‘faster is slower’ in collective egress of human crowds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 51-69.
    6. Huang, Shenshi & Zhang, Teng & Lo, Siuming & Lu, Shouxiang & Li, Changhai, 2018. "Experimental study of individual and single-file pedestrian movement in narrow seat aisle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1023-1033.
    7. Karolina Żydek & Małgorzata Król & Aleksander Król, 2021. "Evacuation Simulation Focusing on Modeling of Disabled People Movement," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    8. Liu, Yixue & Mao, Zhanli, 2022. "An experimental study on the critical state of herd behavior in decision-making of the crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    9. Jin, Cheng-Jie & Shi, Ke-Da & Jiang, Rui & Li, Dawei & Fang, Shuyi, 2023. "Simulation of bi-directional pedestrian flow under high densities using a modified social force model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    10. Kinateder, Max & Warren, William H., 2021. "Exit choice during evacuation is influenced by both the size and proportion of the egressing crowd," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    11. Haghani, Milad & Sarvi, Majid, 2018. "Hypothetical bias and decision-rule effect in modelling discrete directional choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 361-388.
    12. S. Van Cranenburgh & S. Wang & A. Vij & F. Pereira & J. Walker, 2021. "Choice modelling in the age of machine learning -- discussion paper," Papers 2101.11948, arXiv.org, revised Nov 2021.
    13. Liu, Qiujia & Lu, Linjun & Zhang, Yijing & Hu, Miaoqing, 2022. "Modeling the dynamics of pedestrian evacuation in a complex environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    14. Hao, Qing-Yi & Qian, Jia-Li & Wu, Chao-Yun & Guo, Ning, 2021. "Phase behaviors of counterflowing stream of pedestrians with site-exchange in local vision and environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    15. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    16. Haghani, Milad & Sarvi, Majid, 2019. "Laboratory experimentation and simulation of discrete direction choices: Investigating hypothetical bias, decision-rule effect and external validity based on aggregate prediction measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 134-157.
    17. Huang, Zhiren & Wang, Pu & Zhang, Fan & Gao, Jianxi & Schich, Maximilian, 2018. "A mobility network approach to identify and anticipate large crowd gatherings," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 147-170.
    18. Xia, Yingji & Sun, Zhe & Qu, Zhaowei & Liu, Tianze & Li, Zhihui & Gao, Yuhong, 2021. "Reaction model of conflictive e-bikes and numerical simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    19. Kefan Xie & Benbu Liang & Yu Song & Xueqin Dong, 2019. "Analysis of Walking-Edge Effect in Train Station Evacuation Scenarios: A Sustainable Transportation Perspective," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    20. Shahhoseini, Zahra & Sarvi, Majid, 2019. "Pedestrian crowd flows in shared spaces: Investigating the impact of geometry based on micro and macro scale measures," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 57-87.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0232203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.