IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v657y2025ics0378437124007611.html
   My bibliography  Save this article

Influence of subsequent path and pressure on pedestrian route choice in emergency evacuations

Author

Listed:
  • Li, Ruoyu
  • Wang, Xiang
  • Lovreglio, Ruggiero
  • Ding, Heng
  • Wang, Qiao
  • Chen, Juan
  • Jiang, Eric
  • Ma, Jian

Abstract

Route choice significantly impacts pedestrian evacuation efficiency. Previous studies have mainly focused on environmental or pedestrian conditions in single enclosed spaces, with limited consideration for the effects of successive paths, including both the current paths and subsequent paths beyond the room where pedestrians are located. In this study, we propose a new experimental setup with multiple subsequent paths. We carried out a series of single-person experiments to investigate the effect of different pressure levels on pedestrian route choice in multiple scenarios with different subsequent paths. The results indicate that path length is an important factor for the single person route choice, and the greater the length difference between alternative paths, the higher the proportion of pedestrians choosing the shorter path, reaching up to 100 %. Participants seem to have a short-term oriented behavior, when the total path length is the same, over 60 % of participants chose the shorter current path in all scenarios, and with a 21.67 % higher selection rate observed in high-pressure scenarios compared to low-pressure scenarios. The results of the logit regression analysis also significantly indicate the impact of pressure on pedestrian route choice, and the length of the current path has a greater influence on route choice than the length of the subsequent path. These results provide new evidence for future evacuation design and management in enclosed spaces.

Suggested Citation

  • Li, Ruoyu & Wang, Xiang & Lovreglio, Ruggiero & Ding, Heng & Wang, Qiao & Chen, Juan & Jiang, Eric & Ma, Jian, 2025. "Influence of subsequent path and pressure on pedestrian route choice in emergency evacuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 657(C).
  • Handle: RePEc:eee:phsmap:v:657:y:2025:i:c:s0378437124007611
    DOI: 10.1016/j.physa.2024.130252
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124007611
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130252?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Milad Haghani & Majid Sarvi & Zahra Shahhoseini & Maik Boltes, 2016. "How Simple Hypothetical-Choice Experiments Can Be Utilized to Learn Humans’ Navigational Escape Decisions in Emergencies," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-24, November.
    2. McFadden, Daniel L., 1984. "Econometric analysis of qualitative response models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 24, pages 1395-1457, Elsevier.
    3. Lovreglio, Ruggiero & Fonzone, Achille & dell’Olio, Luigi, 2016. "A mixed logit model for predicting exit choice during building evacuations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 59-75.
    4. Guo, Ren-Yong & Huang, Hai-Jun & Wong, S.C., 2012. "Route choice in pedestrian evacuation under conditions of good and zero visibility: Experimental and simulation results," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 669-686.
    5. Zhu, Yu & Chen, Tao & Ding, Ning & Chraibi, Mohcine & Fan, Wei-Cheng, 2021. "Follow people or signs? A novel way-finding method based on experiments and simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    6. Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Route choice in the pedestrian evacuation: Microscopic formulation based on visual information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    7. Di, Xuan & Liu, Henry X., 2016. "Boundedly rational route choice behavior: A review of models and methodologies," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 142-179.
    8. Shlomo Bekhor & Moshe Ben-Akiva & M. Ramming, 2006. "Evaluation of choice set generation algorithms for route choice models," Annals of Operations Research, Springer, vol. 144(1), pages 235-247, April.
    9. Kinateder, Max & Warren, William H., 2021. "Exit choice during evacuation is influenced by both the size and proportion of the egressing crowd," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    10. Jin, Cheng-Jie & Wu, Chenyang & Song, Yuchen & Liu, Tongfei & Li, Dawei & Jiang, Rui & Fang, Shuyi, 2024. "The route choices of pedestrians under crowded and non-emergency conditions: Two-route experiments and modeling," Journal of choice modelling, Elsevier, vol. 50(C).
    11. Haghani, Milad & Sarvi, Majid, 2018. "Crowd behaviour and motion: Empirical methods," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 253-294.
    12. Haghani, Milad & Sarvi, Majid, 2017. "Stated and revealed exit choices of pedestrian crowd evacuees," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 238-259.
    13. Gao, Dong Li & Xie, Wei & Ming Lee, Eric Wai, 2022. "Individual-level exit choice behaviour under uncertain risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Dong Li & Xie, Wei & Ming Lee, Eric Wai, 2022. "Individual-level exit choice behaviour under uncertain risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Haghani, Milad & Sarvi, Majid, 2018. "Hypothetical bias and decision-rule effect in modelling discrete directional choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 361-388.
    3. Haghani, Milad & Sarvi, Majid, 2019. "Laboratory experimentation and simulation of discrete direction choices: Investigating hypothetical bias, decision-rule effect and external validity based on aggregate prediction measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 134-157.
    4. Kinateder, Max & Warren, William H., 2021. "Exit choice during evacuation is influenced by both the size and proportion of the egressing crowd," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    5. Shahhoseini, Zahra & Sarvi, Majid, 2019. "Pedestrian crowd flows in shared spaces: Investigating the impact of geometry based on micro and macro scale measures," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 57-87.
    6. Zhang, Wenke & Zhang, Zhichao & Wang, Tao & Nong, Tingting & Ma, Yueyao & Lee, Eric Wai Ming & Shi, Meng, 2024. "Effects of risk information on pedestrian evacuation during fire emergencies: Virtual experiments and survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 656(C).
    7. Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Data-driven framework for the adaptive exit selection problem in pedestrian flow: Visual information based heuristics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    8. Wu, Chengyuan & Yang, Liangze & Du, Jie & Pei, Xin & Wong, S.C., 2024. "Continuum dynamic traffic models with novel local route-choice strategies for urban cities," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    9. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    10. Xu, Chenchen & Luo, Yiyang & Fuellhart, Kurt & Shao, Quan & Witlox, Frank, 2023. "Modeling exit choice behavior in airplane emergency evacuations," Journal of Air Transport Management, Elsevier, vol. 112(C).
    11. Kayvan Aghabayk & Alireza Soltani & Nirajan Shiwakoti, 2022. "Investigating Pedestrians’ Exit Choice with Incident Location Awareness in an Emergency in a Multi-Level Shopping Complex," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    12. Haghani, Milad & Bliemer, Michiel C.J. & Rose, John M. & Oppewal, Harmen & Lancsar, Emily, 2021. "Hypothetical bias in stated choice experiments: Part I. Macro-scale analysis of literature and integrative synthesis of empirical evidence from applied economics, experimental psychology and neuroimag," Journal of choice modelling, Elsevier, vol. 41(C).
    13. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2019. "When ‘push’ does not come to ‘shove’: Revisiting ‘faster is slower’ in collective egress of human crowds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 51-69.
    14. Huang, Shenshi & Zhang, Teng & Lo, Siuming & Lu, Shouxiang & Li, Changhai, 2018. "Experimental study of individual and single-file pedestrian movement in narrow seat aisle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1023-1033.
    15. Li, Dawei & Feng, Siqi & Song, Yuchen & Lai, Xinjun & Bekhor, Shlomo, 2023. "Asymmetric closed-form route choice models: Formulations and comparative applications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    16. Milad Haghani & Michiel C. J. Bliemer & John M. Rose & Harmen Oppewal & Emily Lancsar, 2021. "Hypothetical bias in stated choice experiments: Part I. Integrative synthesis of empirical evidence and conceptualisation of external validity," Papers 2102.02940, arXiv.org.
    17. Manley, Ed & Cheng, Tao, 2018. "Exploring the role of spatial cognition in predicting urban traffic flow through agent-based modelling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 14-23.
    18. Huang, Zhiren & Wang, Pu & Zhang, Fan & Gao, Jianxi & Schich, Maximilian, 2018. "A mobility network approach to identify and anticipate large crowd gatherings," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 147-170.
    19. Wang, Xinjian & Liu, Zhengjiang & Loughney, Sean & Yang, Zaili & Wang, Yanfu & Wang, Jin, 2022. "Numerical analysis and staircase layout optimisation for a Ro-Ro passenger ship during emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    20. Xuan Di & Henry X. Liu & Shanjiang Zhu & David M. Levinson, 2017. "Indifference bands for boundedly rational route switching," Transportation, Springer, vol. 44(5), pages 1169-1194, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:657:y:2025:i:c:s0378437124007611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.