IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0227912.html
   My bibliography  Save this article

Long-term changes in winter abundance of the barbastelle Barbastella barbastellus in Poland and the climate change – Are current monitoring schemes still reliable for cryophilic bat species?

Author

Listed:
  • Iwona Gottfried
  • Tomasz Gottfried
  • Grzegorz Lesiński
  • Grzegorz Hebda
  • Maurycy Ignaczak
  • Grzegorz Wojtaszyn
  • Mirosław Jurczyszyn
  • Maciej Fuszara
  • Elżbieta Fuszara
  • Witold Grzywiński
  • Grzegorz Błachowski
  • Janusz Hejduk
  • Radosław Jaros
  • Marek Kowalski

Abstract

Warmer winters may lead to changes in the hibernation behaviour of bats, such as the barbastelle Barbastella barbastellus, which prefers to hibernate at low temperatures. The species is also known for its large annual fluctuations in the number of wintering individuals, so inference about population trends should be based on long-term data. Prior to 2005, analyses indicated stable or even increasing barbastelle population in Poland. We analysed the results of 13 winter bat counts (2005–2017) of the species from 15 of the largest hibernacula, and additional site of 47 small bunkers, in Poland. The total number of wintering individuals remained stable during the study period, because the barbastelle is not a long-distance migrant, this likely reflects the national population trend. On the basis of mean winter air temperatures we divided the country into four thermal regions. Analyses of barbastelle abundance in hibernacula in the four regions revealed a 4.8% annual mean increase in numbers in the coldest region, where mean winter temperatures were below -2°C, annual mean declines of 3.3% and 3.1% in two warmer regions of western Poland, but no trend in the region of intermediate mean winter temperatures of between -1°C and -2°C. Overall, there was a significant, but weak, negative correlation between the abundance of hibernating individuals and the mean winter temperature. On the other hand, the number of individuals hibernating in small bunkers increased, even though the site was located in one of the warm regions. The results indicate a warming climate will likely reduce the use of large, well-insulated winter roosts by species that prefer colder conditions–and that this is already happening. For forest-dwelling bats, such as the barbastelle, for which monitoring schemes are primarily based on winter surveys of large hibernacula, estimations of population trends may consequently become less reliable.

Suggested Citation

  • Iwona Gottfried & Tomasz Gottfried & Grzegorz Lesiński & Grzegorz Hebda & Maurycy Ignaczak & Grzegorz Wojtaszyn & Mirosław Jurczyszyn & Maciej Fuszara & Elżbieta Fuszara & Witold Grzywiński & Grzegorz, 2020. "Long-term changes in winter abundance of the barbastelle Barbastella barbastellus in Poland and the climate change – Are current monitoring schemes still reliable for cryophilic bat species?," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
  • Handle: RePEc:plo:pone00:0227912
    DOI: 10.1371/journal.pone.0227912
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227912
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0227912&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0227912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    2. Jianping Huang & Haipeng Yu & Xiaodan Guan & Guoyin Wang & Ruixia Guo, 2016. "Accelerated dryland expansion under climate change," Nature Climate Change, Nature, vol. 6(2), pages 166-171, February.
    3. Murray M. Humphries & Donald W. Thomas & John R. Speakman, 2002. "Climate-mediated energetic constraints on the distribution of hibernating mammals," Nature, Nature, vol. 418(6895), pages 313-316, July.
    4. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    2. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    3. Zhang, Jiarui & Jørgensen, Sven E. & Lu, Jianjian & Nielsen, Søren N. & Wang, Qiang, 2014. "A model for the contribution of macrophyte-derived organic carbon in harvested tidal freshwater marshes to surrounding estuarine and oceanic ecosystems and its response to global warming," Ecological Modelling, Elsevier, vol. 294(C), pages 105-116.
    4. A. Kosanic & S. Harrison & K. Anderson & I. Kavcic, 2014. "Present and historical climate variability in South West England," Climatic Change, Springer, vol. 124(1), pages 221-237, May.
    5. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    6. Guillaume Bal & Etienne Rivot & Jean-Luc Baglinière & Jonathan White & Etienne Prévost, 2014. "A Hierarchical Bayesian Model to Quantify Uncertainty of Stream Water Temperature Forecasts," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-24, December.
    7. Fuentes, M.M.P.B. & Porter, W.P., 2013. "Using a microclimate model to evaluate impacts of climate change on sea turtles," Ecological Modelling, Elsevier, vol. 251(C), pages 150-157.
    8. Ernesto Azzurro & Paula Moschella & Francesc Maynou, 2011. "Tracking Signals of Change in Mediterranean Fish Diversity Based on Local Ecological Knowledge," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    9. Dan Song & Tangbin Huo & Zhao Zhang & Lei Cheng & Le Wang & Kun Ming & Hui Liu & Mengsha Li & Xue Du, 2022. "Metagenomic Analysis Reveals the Response of Microbial Communities and Their Functions in Lake Sediment to Environmental Factors," IJERPH, MDPI, vol. 19(24), pages 1-15, December.
    10. Edward Kato & Claudia Ringler & Mahmud Yesuf & Elizabeth Bryan, 2011. "Soil and water conservation technologies: a buffer against production risk in the face of climate change? Insights from the Nile basin in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 42(5), pages 593-604, September.
    11. Lazarus Chapungu & Luxon Nhamo & Roberto Cazzolla Gatti & Munyaradzi Chitakira, 2020. "Quantifying Changes in Plant Species Diversity in a Savanna Ecosystem Through Observed and Remotely Sensed Data," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    12. Hong Ying & Hongyan Zhang & Ying Sun & Jianjun Zhao & Zhengxiang Zhang & Xiaoyi Guo & Hang Zhao & Rihan Wu & Guorong Deng, 2020. "CMIP5-Based Spatiotemporal Changes of Extreme Temperature Events during 2021–2100 in Mainland China," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    13. Peng Qi & Guangxin Zhang & Yi Jun Xu & Zhikun Xia & Ming Wang, 2019. "Response of Water Resources to Future Climate Change in a High-Latitude River Basin," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    14. Víctor Rincón & Javier Velázquez & Derya Gülçin & Aida López-Sánchez & Carlos Jiménez & Ali Uğur Özcan & Juan Carlos López-Almansa & Tomás Santamaría & Daniel Sánchez-Mata & Kerim Çiçek, 2023. "Mapping Priority Areas for Connectivity of Yellow-Winged Darter ( Sympetrum flaveolum , Linnaeus 1758) under Climate Change," Land, MDPI, vol. 12(2), pages 1-39, January.
    15. Lucie Kuczynski & Mathieu Chevalier & Pascal Laffaille & Marion Legrand & Gaël Grenouillet, 2017. "Indirect effect of temperature on fish population abundances through phenological changes," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-13, April.
    16. Kathleen A. Alexander & Marcos Carzolio & Douglas Goodin & Eric Vance, 2013. "Climate Change is Likely to Worsen the Public Health Threat of Diarrheal Disease in Botswana," IJERPH, MDPI, vol. 10(4), pages 1-29, March.
    17. Stergios Pirintsos & Luca Paoli & Stefano Loppi & Kiriakos Kotzabasis, 2011. "Photosynthetic performance of lichen transplants as early indicator of climatic stress along an altitudinal gradient in the arid Mediterranean area," Climatic Change, Springer, vol. 107(3), pages 305-328, August.
    18. Sang-Don Lee, 2017. "Global Warming Leading to Phenological Responses in the Process of Urbanization, South Korea," Sustainability, MDPI, vol. 9(12), pages 1-27, November.
    19. Roberto Ambrosini & Riccardo Borgoni & Diego Rubolini & Beatrice Sicurella & Wolfgang Fiedler & Franz Bairlein & Stephen R Baillie & Robert A Robinson & Jacquie A Clark & Fernando Spina & Nicola Saino, 2014. "Modelling the Progression of Bird Migration with Conditional Autoregressive Models Applied to Ringing Data," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
    20. Katherine Dagon & Daniel P. Schrag, 2019. "Quantifying the effects of solar geoengineering on vegetation," Climatic Change, Springer, vol. 153(1), pages 235-251, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0227912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.