IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0218213.html
   My bibliography  Save this article

Forest management optimization across spatial scales to reconcile economic and conservation objectives

Author

Listed:
  • Tähti Pohjanmies
  • Kyle Eyvindson
  • Mikko Mönkkönen

Abstract

Conflicts between biodiversity conservation and resource production can be mitigated by multi-objective management planning. Optimizing management for multiple objectives over larger land areas likely entails trading off the practicability of the process against the goodness of the solution. It is therefore worthwhile to resolve how large areas are required as management planning regions to reconcile conflicting objectives as effectively as possible. We aimed to reveal how the extent of forestry planning regions impacts the potential to mitigate a forestry-conservation conflict in Finland, represented as a trade-off between harvest income and deadwood availability. We used forecasted data from a forest simulator, a hierarchy of forestry planning regions, and an optimization model to explore the production possibility frontier between harvest income and deadwood. We compared the overall outcomes when management was optimized within the different-sized planning regions in terms of the two objectives, the spatial variation of deadwood, and the optimal combinations of management regimes. Increasing the size of the planning regions did produce higher simultaneous levels of the two objectives, but the differences were most often of the magnitude of only a few percentages. The differences among the scales were minor also in terms of the spatial variation in deadwood availability and in the optimal management combinations. The conflict between timber harvesting and deadwood availability is only marginally easier to mitigate at large spatial scales than at small forest ownership scales. However, regardless of the spatial scale of planning, the achievable solutions may not be good enough to safeguard deadwood-dependent biodiversity without active deadwood creation.

Suggested Citation

  • Tähti Pohjanmies & Kyle Eyvindson & Mikko Mönkkönen, 2019. "Forest management optimization across spatial scales to reconcile economic and conservation objectives," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-16, June.
  • Handle: RePEc:plo:pone00:0218213
    DOI: 10.1371/journal.pone.0218213
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218213
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0218213&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0218213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sean L. Maxwell & Richard A. Fuller & Thomas M. Brooks & James E. M. Watson, 2016. "Biodiversity: The ravages of guns, nets and bulldozers," Nature, Nature, vol. 536(7615), pages 143-145, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moriguchi, Kai, 2021. "Identifying optimal forest stand selection under subsidization using stand-level optimal harvesting schedules," Land Use Policy, Elsevier, vol. 108(C).
    2. Eyvindson, Kyle & Duflot, Rémi & Triviño, María & Blattert, Clemens & Potterf, Mária & Mönkkönen, Mikko, 2021. "High boreal forest multifunctionality requires continuous cover forestry as a dominant management," Land Use Policy, Elsevier, vol. 100(C).
    3. Pelyukh, Oksana & Lavnyy, Vasyl & Paletto, Alessandro & Troxler, David, 2021. "Stakeholder analysis in sustainable forest management: An application in the Yavoriv region (Ukraine)," Forest Policy and Economics, Elsevier, vol. 131(C).
    4. Bakx, Tristan R.M. & Trubins, Renats & Eggers, Jeannette & Akselsson, Cecilia, 2023. "The effect of spatial and temporal planning scale on the trade-off between the financial value and carbon storage in production forests," Land Use Policy, Elsevier, vol. 127(C).
    5. Ager, Alan A. & Barros, Ana M.G. & Houtman, Rachel & Seli, Rob & Day, Michelle A., 2020. "Modelling the effect of accelerated forest management on long-term wildfire activity," Ecological Modelling, Elsevier, vol. 421(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristian Steensen Nielsen & Theresa M. Marteau & Jan M. Bauer & Richard B. Bradbury & Steven Broad & Gayle Burgess & Mark Burgman & Hilary Byerly & Susan Clayton & Dulce Espelosin & Paul J. Ferraro & , 2021. "Biodiversity conservation as a promising frontier for behavioural science," Nature Human Behaviour, Nature, vol. 5(5), pages 550-556, May.
    2. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    3. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    4. Jan Streeck & Quirin Dammerer & Dominik Wiedenhofer & Fridolin Krausmann, 2021. "The role of socio‐economic material stocks for natural resource use in the United States of America from 1870 to 2100," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1486-1502, December.
    5. Gyan Charitha de Silva & Eugenie Christine Regan & Edward Henry Beattie Pollard & Prue Frances Elizabeth Addison, 2019. "The evolution of corporate no net loss and net positive impact biodiversity commitments: Understanding appetite and addressing challenges," Business Strategy and the Environment, Wiley Blackwell, vol. 28(7), pages 1481-1495, November.
    6. R. C. Rodríguez-Caro & E. Graciá & S. P. Blomberg & H. Cayuela & M. Grace & C. P. Carmona & H. A. Pérez-Mendoza & A. Giménez & R. Salguero-Gómez, 2023. "Anthropogenic impacts on threatened species erode functional diversity in chelonians and crocodilians," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Fabrício Otávio do Nascimento Pereira & Graciliano Galdino Alves dos Santos & Anderson Borges Serra & Cleuton Lima Miranda & Guilherme da Silva Araújo & Emil José Hernández Ruz, 2023. "Composition of the Anuran Community in a Forest Management Area in Southeastern Amazonia," Land, MDPI, vol. 12(7), pages 1-13, July.
    8. Verena Haider & Franz Essl & Klaus Peter Zulka & Stefan Schindler, 2022. "Achieving Transformative Change in Food Consumption in Austria: A Survey on Opportunities and Obstacles," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    9. Kazi Kamrul Islam & Md. Saifullah & M. Golam Mahboob & Kazi Noor-E-Alam Jewel & S. M. Kamran Ashraf & Kimihiko Hyakumura, 2024. "Restoring Soil Fertility, Productivity and Biodiversity through Participatory Agroforestry: Evidence from Madhupur Sal Forest, Bangladesh," Land, MDPI, vol. 13(3), pages 1-15, March.
    10. Hao Li & Hongyu Chen & Minghao Wu & Kai Zhou & Xiang Zhang & Zhicheng Liu, 2022. "A Dynamic Evaluation Method of Urban Ecological Networks Combining Graphab and the FLUS Model," Land, MDPI, vol. 11(12), pages 1-15, December.
    11. Sébastien Boillat & Jean-David Gerber & Christoph Oberlack & Julie G. Zaehringer & Chinwe Ifejika Speranza & Stephan Rist, 2018. "Distant Interactions, Power, and Environmental Justice in Protected Area Governance: A Telecoupling Perspective," Sustainability, MDPI, vol. 10(11), pages 1-30, October.
    12. Robin Lines & Dimitrios Bormpoudakis & Panteleimon Xofis & Joseph Tzanopoulos, 2021. "Modelling Multi-Species Connectivity at the Kafue-Zambezi Interface: Implications for Transboundary Carnivore Conservation," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    13. Harry C. Wilting & Aafke M. Schipper & Olga Ivanova & Diana Ivanova & Mark A. J. Huijbregts, 2021. "Subnational greenhouse gas and land‐based biodiversity footprints in the European Union," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 79-94, February.
    14. Abhishek Chaudhary & Arne O. Mooers, 2018. "Terrestrial Vertebrate Biodiversity Loss under Future Global Land Use Change Scenarios," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    15. Ying Yan Tan & Rosmini Omar, 2022. "Green Practices and Innovations of Traditional Chinese Medicine (TCM) Industry in Singapore: Idea Worth Sharing," Sustainability, MDPI, vol. 14(18), pages 1-38, September.
    16. Christoph von Hagke & Chloe Hill & Angela Hof & Thomas Rinder & Andreas Lang & Jan Christian Habel, 2022. "Learning from the COVID-19 Pandemic Crisis to Overcome the Global Environmental Crisis," Sustainability, MDPI, vol. 14(17), pages 1-8, August.
    17. Marlena Gołaś & Piotr Sulewski & Adam Wąs & Anna Kłoczko-Gajewska & Kinga Pogodzińska, 2020. "On the Way to Sustainable Agriculture—Eco-Efficiency of Polish Commercial Farms," Agriculture, MDPI, vol. 10(10), pages 1-24, September.
    18. Tanguy Bernard & Sylvie Lambert & Karen Macours & Margaux Vinez, 2023. "Impact of small farmers' access to improved seeds and deforestation in DR Congo," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Sarah E. Castle & Daniel C. Miller & Pablo J. Ordonez & Kathy Baylis & Karl Hughes, 2021. "The impacts of agroforestry interventions on agricultural productivity, ecosystem services, and human well‐being in low‐ and middle‐income countries: A systematic review," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(2), June.
    20. Céline Bellard & Clara Marino & Franck Courchamp, 2022. "Ranking threats to biodiversity and why it doesn’t matter," Nature Communications, Nature, vol. 13(1), pages 1-4, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0218213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.