IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0145526.html
   My bibliography  Save this article

Decentralized Opportunistic Spectrum Resources Access Model and Algorithm toward Cooperative Ad-Hoc Networks

Author

Listed:
  • Ming Liu
  • Yang Xu
  • Abdul-Wahid Mohammed

Abstract

Limited communication resources have gradually become a critical factor toward efficiency of decentralized large scale multi-agent coordination when both system scales up and tasks become more complex. In current researches, due to the agent’s limited communication and observational capability, an agent in a decentralized setting can only choose a part of channels to access, but cannot perceive or share global information. Each agent’s cooperative decision is based on the partial observation of the system state, and as such, uncertainty in the communication network is unavoidable. In this situation, it is a major challenge working out cooperative decision-making under uncertainty with only a partial observation of the environment. In this paper, we propose a decentralized approach that allows agents cooperatively search and independently choose channels. The key to our design is to build an up-to-date observation for each agent’s view so that a local decision model is achievable in a large scale team coordination. We simplify the Dec-POMDP model problem, and each agent can jointly work out its communication policy in order to improve its local decision utilities for the choice of communication resources. Finally, we discuss an implicate resource competition game, and show that, there exists an approximate resources access tradeoff balance between agents. Based on this discovery, the tradeoff between real-time decision-making and the efficiency of cooperation using these channels can be well improved.

Suggested Citation

  • Ming Liu & Yang Xu & Abdul-Wahid Mohammed, 2016. "Decentralized Opportunistic Spectrum Resources Access Model and Algorithm toward Cooperative Ad-Hoc Networks," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-21, January.
  • Handle: RePEc:plo:pone00:0145526
    DOI: 10.1371/journal.pone.0145526
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145526
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0145526&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0145526?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mohd Nadhir Ab Wahab & Samia Nefti-Meziani & Adham Atyabi, 2015. "A Comprehensive Review of Swarm Optimization Algorithms," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-36, May.
    2. Tingkai Wang & Quan Dang & Peiyuan Pan, 2013. "A Multi-Robot System Based on A Hybrid Communication Approach," Studies in Media and Communication, Redfame publishing, vol. 1(1), pages 91-100, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Memon, Mudasir Ahmed & Mekhilef, Saad & Mubin, Marizan & Aamir, Muhammad, 2018. "Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2235-2253.
    2. Sangeeta & Kapil Sharma & Manju Bala, 2020. "An ecological space based hybrid swarm-evolutionary algorithm for software reliability model parameter estimation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 77-92, February.
    3. Hormozi, Elham & Hu, Shuwen & Ding, Zhe & Tian, Yu-Chu & Wang, You-Gan & Yu, Zu-Guo & Zhang, Weizhe, 2022. "Energy-efficient virtual machine placement in data centres via an accelerated Genetic Algorithm with improved fitness computation," Energy, Elsevier, vol. 252(C).
    4. Minfang Huang & Qiong Guo & Jing Liu & Xiaoxu Huang, 2018. "Mixed Model Assembly Line Scheduling Approach to Order Picking Problem in Online Supermarkets," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    5. Himansu Das & Sanjay Prajapati & Mahendra Kumar Gourisaria & Radha Mohan Pattanayak & Abdalla Alameen & Manjur Kolhar, 2023. "Feature Selection Using Golden Jackal Optimization for Software Fault Prediction," Mathematics, MDPI, vol. 11(11), pages 1-28, May.
    6. Shah Fahad & Shiyou Yang & Rehan Ali Khan & Shafiullah Khan & Shoaib Ahmed Khan, 2021. "A Multimodal Smart Quantum Particle Swarm Optimization for Electromagnetic Design Optimization Problems," Energies, MDPI, vol. 14(15), pages 1-11, July.
    7. Anupama Kaushik & Shivi Verma & Harsh Jot Singh & Gitika Chhabra, 2017. "Software cost optimization integrating fuzzy system and COA-Cuckoo optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1461-1471, November.
    8. Kharkeshi, Behrad Alizadeh & Shafaghat, Rouzbeh & Jahanian, Omid & Alamian, Rezvan & Rezanejad, Kourosh, 2022. "Experimental study of an oscillating water column converter to optimize nonlinear PTO using genetic algorithm," Energy, Elsevier, vol. 260(C).
    9. Khamis, Nurulaqilla & Selamat, Hazlina & Ismail, Fatimah Sham & Lutfy, Omar Farouq & Haniff, Mohamad Fadzli & Nordin, Ili Najaa Aimi Mohd, 2020. "Optimized exit door locations for a safer emergency evacuation using crowd evacuation model and artificial bee colony optimization," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    10. Islam, Towhidul & Meade, Nigel & Carson, Richard T. & Louviere, Jordan J. & Wang, Juan, 2022. "The usefulness of socio-demographic variables in predicting purchase decisions: Evidence from machine learning procedures," Journal of Business Research, Elsevier, vol. 151(C), pages 324-338.
    11. Mustafa Erkan Turan, 2016. "Fuzzy Systems Tuned By Swarm Based Optimization Algorithms for Predicting Stream flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4345-4362, September.
    12. De Vincenzo, Ilario & Massari, Giovanni F. & Giannoccaro, Ilaria & Carbone, Giuseppe & Grigolini, Paolo, 2018. "Mimicking the collective intelligence of human groups as an optimization tool for complex problems," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 259-266.
    13. Afroz Alam & Preeti Verma & Mohd Tariq & Adil Sarwar & Basem Alamri & Noore Zahra & Shabana Urooj, 2021. "Jellyfish Search Optimization Algorithm for MPP Tracking of PV System," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    14. Hossein Hassani & Mohammad Reza Yeganegi & Xu Huang, 2021. "Fusing Nature with Computational Science for Optimal Signal Extraction," Stats, MDPI, vol. 4(1), pages 1-15, January.
    15. Mohammad Javad Amoshahy & Mousa Shamsi & Mohammad Hossein Sedaaghi, 2016. "A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-42, August.
    16. Rehan Ali Khan & Shiyou Yang & Shafiullah Khan & Shah Fahad & Kalimullah, 2021. "A Multimodal Improved Particle Swarm Optimization for High Dimensional Problems in Electromagnetic Devices," Energies, MDPI, vol. 14(24), pages 1-19, December.
    17. Hilkija Gaïus Tosso & Saulo Anderson Bibiano Jardim & Rafael Bloise & Max Mauro Dias Santos, 2022. "Spark Ignition Engine Modeling Using Optimized Artificial Neural Network," Energies, MDPI, vol. 15(18), pages 1-23, September.
    18. Shafiq Ahmad, 2022. "Electromagnetic Field Optimization Based Selective Harmonic Elimination in a Cascaded Symmetric H-Bridge Inverter," Energies, MDPI, vol. 15(20), pages 1-18, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0145526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.