IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0126498.html
   My bibliography  Save this article

A Comparison of Phenotypic Traits Related to Trypanotolerance in Five West African Cattle Breeds Highlights the Value of Shorthorn Taurine Breeds

Author

Listed:
  • David Berthier
  • Moana Peylhard
  • Guiguigbaza-Kossigan Dayo
  • Laurence Flori
  • Souleymane Sylla
  • Seydou Bolly
  • Hassane Sakande
  • Isabelle Chantal
  • Sophie Thevenon

Abstract

Background: Animal African Trypanosomosis particularly affects cattle and dramatically impairs livestock development in sub-Saharan Africa. African Zebu (AFZ) or European taurine breeds usually die of the disease in the absence of treatment, whereas West African taurine breeds (AFT), considered trypanotolerant, are able to control the pathogenic effects of trypanosomosis. Up to now, only one AFT breed, the longhorn N’Dama (NDA), has been largely studied and is considered as the reference trypanotolerant breed. Shorthorn taurine trypanotolerance has never been properly assessed and compared to NDA and AFZ breeds. Methodology/Principal Findings: This study compared the trypanotolerant/susceptible phenotype of five West African local breeds that differ in their demographic history. Thirty-six individuals belonging to the longhorn taurine NDA breed, two shorthorn taurine Lagune (LAG) and Baoulé (BAO) breeds, the Zebu Fulani (ZFU) and the Borgou (BOR), an admixed breed between AFT and AFZ, were infected by Trypanosoma congolense IL1180. All the cattle were genetically characterized using dense SNP markers, and parameters linked to parasitaemia, anaemia and leukocytes were analysed using synthetic variables and mixed models. We showed that LAG, followed by NDA and BAO, displayed the best control of anaemia. ZFU showed the greatest anaemia and the BOR breed had an intermediate value, as expected from its admixed origin. Large differences in leukocyte counts were also observed, with higher leukocytosis for AFT. Nevertheless, no differences in parasitaemia were found, except a tendency to take longer to display detectable parasites in ZFU. Conclusions: We demonstrated that LAG and BAO are as trypanotolerant as NDA. This study highlights the value of shorthorn taurine breeds, which display strong local adaptation to trypanosomosis. Thanks to further analyses based on comparisons of the genome or transcriptome of the breeds, these results open up the way for better knowledge of host-pathogen interactions and, furthermore, for identifying key biological pathways.

Suggested Citation

  • David Berthier & Moana Peylhard & Guiguigbaza-Kossigan Dayo & Laurence Flori & Souleymane Sylla & Seydou Bolly & Hassane Sakande & Isabelle Chantal & Sophie Thevenon, 2015. "A Comparison of Phenotypic Traits Related to Trypanotolerance in Five West African Cattle Breeds Highlights the Value of Shorthorn Taurine Breeds," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-21, May.
  • Handle: RePEc:plo:pone00:0126498
    DOI: 10.1371/journal.pone.0126498
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126498
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0126498&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0126498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nick Patterson & Alkes L Price & David Reich, 2006. "Population Structure and Eigenanalysis," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-20, December.
    2. Kristjanson, P. M. & Swallow, B. M. & Rowlands, G. J. & Kruska, R. L. & de Leeuw, P. N., 1999. "Measuring the costs of African animal trypanosomosis, the potential benefits of control and returns to research," Agricultural Systems, Elsevier, vol. 59(1), pages 79-98, January.
    3. Mathieu Gautier & Denis Laloë & Katayoun Moazami-Goudarzi, 2010. "Insights into the Genetic History of French Cattle from Dense SNP Data on 47 Worldwide Breeds," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maurice Cossi Ahozonlin & Luc Hippolyte Dossa, 2020. "Diversity and Resilience to Socio-Ecological Changes of Smallholder Lagune Cattle Farming Systems of Benin," Sustainability, MDPI, vol. 12(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markus Neuditschko & Mehar S Khatkar & Herman W Raadsma, 2012. "NetView: A High-Definition Network-Visualization Approach to Detect Fine-Scale Population Structures from Genome-Wide Patterns of Variation," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    2. Gyaneshwer Chaubey & Anurag Kadian & Saroj Bala & Vadlamudi Raghavendra Rao, 2015. "Genetic Affinity of the Bhil, Kol and Gond Mentioned in Epic Ramayana," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-11, June.
    3. Daniel Svensson & Matilda Rentoft & Anna M Dahlin & Emma Lundholm & Pall I Olason & Andreas Sjödin & Carin Nylander & Beatrice S Melin & Johan Trygg & Erik Johansson, 2020. "A whole-genome sequenced control population in northern Sweden reveals subregional genetic differences," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-18, September.
    4. Estavoyer, Maxime & François, Olivier, 2022. "Theoretical analysis of principal components in an umbrella model of intraspecific evolution," Theoretical Population Biology, Elsevier, vol. 148(C), pages 11-21.
    5. Thornton, P. K. & Herrero, M., 2001. "Integrated crop-livestock simulation models for scenario analysis and impact assessment," Agricultural Systems, Elsevier, vol. 70(2-3), pages 581-602.
    6. Felsenstein, Joseph, 2015. "Covariation of gene frequencies in a stepping-stone lattice of populations," Theoretical Population Biology, Elsevier, vol. 100(C), pages 88-97.
    7. Liesbeth François & Katrien Wijnrocx & Frédéric G Colinet & Nicolas Gengler & Bettine Hulsegge & Jack J Windig & Nadine Buys & Steven Janssens, 2017. "Genomics of a revived breed: Case study of the Belgian campine cattle," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
    8. Okeyo, Ally Mwai & Persley, Gabrielle J. & Kemp, Steve J., 2010. "Livestock and Biodiversity: The Case of Cattle in Africa," 2010: Biodiversity and World Food Security: Nourishing the Planet and Its People, 30 August-1 September 2010 125244, Crawford Fund.
    9. Yaron Granot & Omri Tal & Saharon Rosset & Karl Skorecki, 2016. "On the Apportionment of Population Structure," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-24, August.
    10. Özkan İş & Xue Wang & Joseph S. Reddy & Yuhao Min & Elanur Yilmaz & Prabesh Bhattarai & Tulsi Patel & Jeremiah Bergman & Zachary Quicksall & Michael G. Heckman & Frederick Q. Tutor-New & Birsen Can De, 2024. "Gliovascular transcriptional perturbations in Alzheimer’s disease reveal molecular mechanisms of blood brain barrier dysfunction," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    11. Hyosik Jang & Ian M Ehrenreich, 2012. "Genome-Wide Characterization of Genetic Variation in the Unicellular, Green Alga Chlamydomonas reinhardtii," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    12. Mathieu Gautier & Denis Laloë & Katayoun Moazami-Goudarzi, 2010. "Insights into the Genetic History of French Cattle from Dense SNP Data on 47 Worldwide Breeds," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-11, September.
    13. Xiaofeng Cai & Xuepeng Sun & Chenxi Xu & Honghe Sun & Xiaoli Wang & Chenhui Ge & Zhonghua Zhang & Quanxi Wang & Zhangjun Fei & Chen Jiao & Quanhua Wang, 2021. "Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    14. Lee, Anthony J. & Hibbs, Courtney & Wright, Margaret J. & Martin, Nicholas G. & Keller, Matthew C. & Zietsch, Brendan P., 2017. "Assessing the accuracy of perceptions of intelligence based on heritable facial features," Intelligence, Elsevier, vol. 64(C), pages 1-8.
    15. Thompson Katherine L. & Linnen Catherine R. & Kubatko Laura, 2016. "Tree-based quantitative trait mapping in the presence of external covariates," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(6), pages 473-490, December.
    16. Matthieu Bouaziz & Caroline Paccard & Mickael Guedj & Christophe Ambroise, 2012. "SHIPS: Spectral Hierarchical Clustering for the Inference of Population Structure in Genetic Studies," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-17, October.
    17. Jacobo Pardo-Seco & Alberto Gómez-Carballa & Jorge Amigo & Federico Martinón-Torres & Antonio Salas, 2014. "A Genome-Wide Study of Modern-Day Tuscans: Revisiting Herodotus's Theory on the Origin of the Etruscans," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-11, September.
    18. Andrey V Khrunin & Denis V Khokhrin & Irina N Filippova & Tõnu Esko & Mari Nelis & Natalia A Bebyakova & Natalia L Bolotova & Janis Klovins & Liene Nikitina-Zake & Karola Rehnström & Samuli Ripatti & , 2013. "A Genome-Wide Analysis of Populations from European Russia Reveals a New Pole of Genetic Diversity in Northern Europe," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-9, March.
    19. Ilja M Nolte & Chris Wallace & Stephen J Newhouse & Daryl Waggott & Jingyuan Fu & Nicole Soranzo & Rhian Gwilliam & Panos Deloukas & Irina Savelieva & Dongling Zheng & Chrysoula Dalageorgou & Martin F, 2009. "Common Genetic Variation Near the Phospholamban Gene Is Associated with Cardiac Repolarisation: Meta-Analysis of Three Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-10, July.
    20. Hoicheong Siu & Li Jin & Momiao Xiong, 2012. "Manifold Learning for Human Population Structure Studies," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-18, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0126498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.