IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0008197.html
   My bibliography  Save this article

Waves of Adipose Tissue Growth in the Genetically Obese Zucker Fatty Rat

Author

Listed:
  • Jennifer MacKellar
  • Samuel W Cushman
  • Vipul Periwal

Abstract

Background: In mammals, calories ingested in excess of those used are stored primarily as fat in adipose tissue; consistent ingestion of excess calories requires an enlargement of the adipose tissue mass. Thus, a dysfunction in adipose tissue growth may be a key factor in insulin resistance due to imbalanced fat storage and disrupted insulin action. Adipose tissue growth requires the recruitment and then the development of adipose precursor cells, but little is known about these processes in vivo. Methodology: In this study, adipose cell-size probability distributions were measured in two Zucker fa/fa rats over a period of 151 and 163 days, from four weeks of age, using micro-biopsies to obtain subcutaneous (inguinal) fat tissue from the animals. These longitudinal probability distributions were analyzed to assess the probability of periodic phenomena. Conclusions: Adipose tissue growth in this strain of rat exhibits a striking temporal periodicity of approximately days. A simple model is proposed for the periodicity, with PPAR signaling driven by a deficit in lipid uptake capacity leading to the periodic recruitment of new adipocytes. This model predicts that the observed period will be diet-dependent.

Suggested Citation

  • Jennifer MacKellar & Samuel W Cushman & Vipul Periwal, 2010. "Waves of Adipose Tissue Growth in the Genetically Obese Zucker Fatty Rat," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-9, January.
  • Handle: RePEc:plo:pone00:0008197
    DOI: 10.1371/journal.pone.0008197
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008197
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0008197&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0008197?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kirsty L. Spalding & Erik Arner & Pål O. Westermark & Samuel Bernard & Bruce A. Buchholz & Olaf Bergmann & Lennart Blomqvist & Johan Hoffstedt & Erik Näslund & Tom Britton & Hernan Concha & Moustapha , 2008. "Dynamics of fat cell turnover in humans," Nature, Nature, vol. 453(7196), pages 783-787, June.
    2. Gregory S. Barsh & I. Sadaf Farooqi & Stephen O'Rahilly, 2000. "Genetics of body-weight regulation," Nature, Nature, vol. 404(6778), pages 644-651, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trenton Smith, 2009. "Reconciling psychology with economics: Obesity, behavioral biology, and rational overeating," Journal of Bioeconomics, Springer, vol. 11(3), pages 249-282, December.
    2. Clark, Andrew E. & Etilé, Fabrice, 2011. "Happy house: Spousal weight and individual well-being," Journal of Health Economics, Elsevier, vol. 30(5), pages 1124-1136.
    3. Nur Zuliani Ramli & Kok-Yong Chin & Khairul Anwar Zarkasi & Fairus Ahmad, 2019. "The Beneficial Effects of Stingless Bee Honey from Heterotrigona itama against Metabolic Changes in Rats Fed with High-Carbohydrate and High-Fat Diet," IJERPH, MDPI, vol. 16(24), pages 1-17, December.
    4. Belot, Michèle & James, Jonathan, 2022. "Incentivizing dietary choices among children: Review of experimental evidence," Food Policy, Elsevier, vol. 111(C).
    5. Smith, Trenton G, 2002. "Obesity and Nature's Thumbprint: How Modern Waistlines Can Inform Economic Theory," University of California at Santa Barbara, Economics Working Paper Series qt31g1m028, Department of Economics, UC Santa Barbara.
    6. Smith Trenton G. & Stoddard Christiana & Barnes Michael G, 2009. "Why the Poor Get Fat: Weight Gain and Economic Insecurity," Forum for Health Economics & Policy, De Gruyter, vol. 12(2), pages 1-31, June.
    7. Dang, Thang, 2017. "Body Weight and Hypertension Risk in a Developing Country," MPRA Paper 83182, University Library of Munich, Germany.
    8. Shao-Chin Wu & Yuan-Ming Lo & Jui-Hao Lee & Chin-Yau Chen & Tung-Wei Chen & Hong-Wen Liu & Wei-Nan Lian & Kate Hua & Chen-Chung Liao & Wei-Ju Lin & Chih-Yung Yang & Chien-Yi Tung & Chi-Hung Lin, 2022. "Stomatin modulates adipogenesis through the ERK pathway and regulates fatty acid uptake and lipid droplet growth," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Sang Mun Han & Eun Seo Park & Jeu Park & Hahn Nahmgoong & Yoon Ha Choi & Jiyoung Oh & Kyung Min Yim & Won Taek Lee & Yun Kyung Lee & Yong Geun Jeon & Kyung Cheul Shin & Jin Young Huh & Sung Hee Choi &, 2023. "Unique adipose tissue invariant natural killer T cell subpopulations control adipocyte turnover in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Brown, Judith E. & Broom, Dorothy H. & Nicholson, Jan M. & Bittman, Michael, 2010. "Do working mothers raise couch potato kids? Maternal employment and children's lifestyle behaviours and weight in early childhood," Social Science & Medicine, Elsevier, vol. 70(11), pages 1816-1824, June.
    11. Wei Perng & Mercedes Mora-Plazas & Constanza Marín & Laura S Rozek & Ana Baylin & Eduardo Villamor, 2013. "A Prospective Study of LINE-1DNA Methylation and Development of Adiposity in School-Age Children," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-7, April.
    12. Liam McAllan & Damir Baranasic & Sergio Villicaña & Scarlett Brown & Weihua Zhang & Benjamin Lehne & Marco Adamo & Andrew Jenkinson & Mohamed Elkalaawy & Borzoueh Mohammadi & Majid Hashemi & Nadia Fer, 2023. "Integrative genomic analyses in adipocytes implicate DNA methylation in human obesity and diabetes," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0008197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.