IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31825-z.html
   My bibliography  Save this article

Stomatin modulates adipogenesis through the ERK pathway and regulates fatty acid uptake and lipid droplet growth

Author

Listed:
  • Shao-Chin Wu

    (National Yang Ming Chiao Tung University)

  • Yuan-Ming Lo

    (National Yang Ming Chiao Tung University)

  • Jui-Hao Lee

    (National Yang Ming Chiao Tung University and Academia Sinica)

  • Chin-Yau Chen

    (National Yang Ming Chiao Tung University Hospital)

  • Tung-Wei Chen

    (National Yang Ming Chiao Tung University)

  • Hong-Wen Liu

    (National Yang Ming Chiao Tung University)

  • Wei-Nan Lian

    (National Yang Ming Chiao Tung University)

  • Kate Hua

    (Cancer Progression Research Center, National Yang Ming Chiao Tung University)

  • Chen-Chung Liao

    (Cancer Progression Research Center, National Yang Ming Chiao Tung University
    National Yang Ming Chiao Tung University)

  • Wei-Ju Lin

    (Cancer Progression Research Center, National Yang Ming Chiao Tung University)

  • Chih-Yung Yang

    (Taipei City Hospital)

  • Chien-Yi Tung

    (Cancer Progression Research Center, National Yang Ming Chiao Tung University)

  • Chi-Hung Lin

    (National Yang Ming Chiao Tung University
    National Yang Ming Chiao Tung University
    Cancer Progression Research Center, National Yang Ming Chiao Tung University
    National Yang Ming Chiao Tung University)

Abstract

Regulation of fatty acid uptake, lipid production and storage, and metabolism of lipid droplets (LDs), is closely related to lipid homeostasis, adipocyte hypertrophy and obesity. We report here that stomatin, a major constituent of lipid raft, participates in adipogenesis and adipocyte maturation by modulating related signaling pathways. In adipocyte-like cells, increased stomatin promotes LD growth or enlargements by facilitating LD-LD fusion. It also promotes fatty acid uptake from extracellular environment by recruiting effector molecules, such as FAT/CD36 translocase, to lipid rafts to promote internalization of fatty acids. Stomatin transgenic mice fed with high-fat diet exhibit obesity, insulin resistance and hepatic impairments; however, such phenotypes are not seen in transgenic animals fed with regular diet. Inhibitions of stomatin by gene knockdown or OB-1 inhibit adipogenic differentiation and LD growth through downregulation of PPARγ pathway. Effects of stomatin on PPARγ involves ERK signaling; however, an alternate pathway may also exist.

Suggested Citation

  • Shao-Chin Wu & Yuan-Ming Lo & Jui-Hao Lee & Chin-Yau Chen & Tung-Wei Chen & Hong-Wen Liu & Wei-Nan Lian & Kate Hua & Chen-Chung Liao & Wei-Ju Lin & Chih-Yung Yang & Chien-Yi Tung & Chi-Hung Lin, 2022. "Stomatin modulates adipogenesis through the ERK pathway and regulates fatty acid uptake and lipid droplet growth," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31825-z
    DOI: 10.1038/s41467-022-31825-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31825-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31825-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhiqi Sun & Jingyi Gong & Han Wu & Wenyi Xu & Lizhen Wu & Dijin Xu & Jinlan Gao & Jia-wei Wu & Hongyuan Yang & Maojun Yang & Peng Li, 2013. "Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes," Nature Communications, Nature, vol. 4(1), pages 1-15, June.
    2. Kirsty L. Spalding & Erik Arner & Pål O. Westermark & Samuel Bernard & Bruce A. Buchholz & Olaf Bergmann & Lennart Blomqvist & Johan Hoffstedt & Erik Näslund & Tom Britton & Hernan Concha & Moustapha , 2008. "Dynamics of fat cell turnover in humans," Nature, Nature, vol. 453(7196), pages 783-787, June.
    3. Jian-Wei Hao & Juan Wang & Huiling Guo & Yin-Yue Zhao & Hui-Hui Sun & Yi-Fan Li & Xiao-Ying Lai & Ning Zhao & Xu Wang & Changchuan Xie & Lixin Hong & Xi Huang & Hong-Rui Wang & Cheng-Bin Li & Bin Lian, 2020. "CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Graham A. Heieis & Thiago A. Patente & Luís Almeida & Frank Vrieling & Tamar Tak & Georgia Perona-Wright & Rick M. Maizels & Rinke Stienstra & Bart Everts, 2023. "Metabolic heterogeneity of tissue-resident macrophages in homeostasis and during helminth infection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Clark, Andrew E. & Etilé, Fabrice, 2011. "Happy house: Spousal weight and individual well-being," Journal of Health Economics, Elsevier, vol. 30(5), pages 1124-1136.
    3. Nur Zuliani Ramli & Kok-Yong Chin & Khairul Anwar Zarkasi & Fairus Ahmad, 2019. "The Beneficial Effects of Stingless Bee Honey from Heterotrigona itama against Metabolic Changes in Rats Fed with High-Carbohydrate and High-Fat Diet," IJERPH, MDPI, vol. 16(24), pages 1-17, December.
    4. Belot, Michèle & James, Jonathan, 2022. "Incentivizing dietary choices among children: Review of experimental evidence," Food Policy, Elsevier, vol. 111(C).
    5. Li Weng & Wen-Shuai Tang & Xu Wang & Yingyun Gong & Changqin Liu & Ni-Na Hong & Ying Tao & Kuang-Zheng Li & Shu-Ning Liu & Wanzi Jiang & Ying Li & Ke Yao & Li Chen & He Huang & Yu-Zheng Zhao & Ze-Ping, 2024. "Surplus fatty acid synthesis increases oxidative stress in adipocytes and induces lipodystrophy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Phillip M. Brailey & Lauren Evans & Juan Carlos López-Rodríguez & Anthony Sinadinos & Victoria Tyrrel & Gavin Kelly & Valerie O’Donnell & Peter Ghazal & Susan John & Patricia Barral, 2022. "CD1d-dependent rewiring of lipid metabolism in macrophages regulates innate immune responses," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Sang Mun Han & Eun Seo Park & Jeu Park & Hahn Nahmgoong & Yoon Ha Choi & Jiyoung Oh & Kyung Min Yim & Won Taek Lee & Yun Kyung Lee & Yong Geun Jeon & Kyung Cheul Shin & Jin Young Huh & Sung Hee Choi &, 2023. "Unique adipose tissue invariant natural killer T cell subpopulations control adipocyte turnover in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Wei Perng & Mercedes Mora-Plazas & Constanza Marín & Laura S Rozek & Ana Baylin & Eduardo Villamor, 2013. "A Prospective Study of LINE-1DNA Methylation and Development of Adiposity in School-Age Children," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-7, April.
    9. V. S. Peche & T. A. Pietka & M. Jacome-Sosa & D. Samovski & H. Palacios & G. Chatterjee-Basu & A. C. Dudley & W. Beatty & G. A. Meyer & I. J. Goldberg & N. A. Abumrad, 2023. "Endothelial cell CD36 regulates membrane ceramide formation, exosome fatty acid transfer and circulating fatty acid levels," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Liam McAllan & Damir Baranasic & Sergio Villicaña & Scarlett Brown & Weihua Zhang & Benjamin Lehne & Marco Adamo & Andrew Jenkinson & Mohamed Elkalaawy & Borzoueh Mohammadi & Majid Hashemi & Nadia Fer, 2023. "Integrative genomic analyses in adipocytes implicate DNA methylation in human obesity and diabetes," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    11. Jennifer MacKellar & Samuel W Cushman & Vipul Periwal, 2010. "Waves of Adipose Tissue Growth in the Genetically Obese Zucker Fatty Rat," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-9, January.
    12. Jian Xiao & Le-Wei Dong & Shuai Liu & Fan-Hua Meng & Chang Xie & Xiao-Yi Lu & Weiping J. Zhang & Jie Luo & Bao-Liang Song, 2023. "Bile acids-mediated intracellular cholesterol transport promotes intestinal cholesterol absorption and NPC1L1 recycling," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31825-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.