IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0006650.html
   My bibliography  Save this article

Estimating dengue under-reporting in Puerto Rico using a multiplier model

Author

Listed:
  • Manjunath B Shankar
  • Rosa L Rodríguez-Acosta
  • Tyler M Sharp
  • Kay M Tomashek
  • Harold S Margolis
  • Martin I Meltzer

Abstract

Dengue is a mosquito-borne viral illness that causes a variety of health outcomes, from a mild acute febrile illness to potentially fatal severe dengue. Between 2005 and 2010, the annual number of suspected dengue cases reported to the Passive Dengue Surveillance System (PDSS) in Puerto Rico ranged from 2,346 in 2006 to 22,496 in 2010. Like other passive surveillance systems, PDSS is subject to under-reporting. To estimate the degree of under-reporting in Puerto Rico, we built separate inpatient and outpatient probability-based multiplier models, using data from two different surveillance systems—PDSS and the enhanced dengue surveillance system (EDSS). We adjusted reported cases to account for sensitivity of diagnostic tests, specimens with indeterminate results, and differences between PDSS and EDSS in numbers of reported dengue cases. In addition, for outpatients, we adjusted for the fact that less than 100% of medical providers submit diagnostic specimens from suspected cases. We estimated that a multiplication factor of between 5 (for 2010 data) to 9 (for 2006 data) must be used to correct for the under-reporting of the number of laboratory-positive dengue inpatients. Multiplication factors of between 21 (for 2010 data) to 115 (for 2008 data) must be used to correct for the under-reporting of laboratory-positive dengue outpatients. We also estimated that, after correcting for underreporting, the mean annual rate, for 2005–2010, of medically attended dengue in Puerto Rico to be between 2.1 (for dengue inpatients) to 7.8 (for dengue outpatients) per 1,000 population. These estimated rates compare to the reported rates of 0.4 (dengue outpatients) to 0.1 (dengue inpatients) per 1,000 population. The multipliers, while subject to limitations, will help public health officials correct for underreporting of dengue cases, and thus better evaluate the cost-and-benefits of possible interventions.Author summary: The number of global cases of dengue has increased an estimated 30-fold from 1962 to 2012, and two-fifths of the world’s population are thought to be at risk for dengue. It has been recently estimated that the global incidence of dengue is between 50 and 100 million cases per year. These estimates of burden and impact are, however, are not considered very reliable. It has been previously established and reported that there is notable under-reporting of clinical cases of dengue, even those who sought medical treatment. This includes under-reporting of those hospitalized with laboratory-confirmed dengue. This lack of reliable estimates hampers efforts of public health officials in determining the of burden of disease and the costs-and-benefits of potential interventions. We estimated that multiplication factors ranging from 5 to 9 must be used to correct for under-reporting of laboratory-positive dengue inpatient cases reported to public health officials in Puerto Rico. Multiplication factors ranging from 21 to 115 must be used to correct for the underreporting of laboratory-positive dengue outpatients. Our results illustrate the need for, and thus potential benefits of, using our methodology to estimate the degree of under-reporting in passive dengue systems during epidemic and non-epidemic years.

Suggested Citation

  • Manjunath B Shankar & Rosa L Rodríguez-Acosta & Tyler M Sharp & Kay M Tomashek & Harold S Margolis & Martin I Meltzer, 2018. "Estimating dengue under-reporting in Puerto Rico using a multiplier model," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(8), pages 1-16, August.
  • Handle: RePEc:plo:pntd00:0006650
    DOI: 10.1371/journal.pntd.0006650
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0006650
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0006650&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0006650?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    2. Eduardo A Undurraga & Yara A Halasa & Donald S Shepard, 2013. "Use of Expansion Factors to Estimate the Burden of Dengue in Southeast Asia: A Systematic Analysis," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 7(2), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adriana Zubieta-Zavala & Malaquias López-Cervantes & Guillermo Salinas-Escudero & Adrian Ramírez-Chávez & José Ramos Castañeda & Sendy Isarel Hernández-Gaytán & Juan Guillermo López Yescas & Luis Durá, 2018. "Economic impact of dengue in Mexico considering reported cases for 2012 to 2016," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(12), pages 1-18, December.
    2. Tao Li & Lijia Yang & Sarah E. Smith-Jeffcoat & Alice Wang & Hui Guo & Wei Chen & Xin Du & Hui Zhang, 2021. "Assessing the Quality of Reporting to China’s National TB Surveillance Systems," IJERPH, MDPI, vol. 18(5), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerhart Knerer & Christine S M Currie & Sally C Brailsford, 2020. "The economic impact and cost-effectiveness of combined vector-control and dengue vaccination strategies in Thailand: results from a dynamic transmission model," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(10), pages 1-32, October.
    2. Mohd ‘Ammar Ihsan Ahmad Zamzuri & Farah Nabila Abd Majid & Rahmat Dapari & Mohd Rohaizat Hassan & Abd Majid Mohd Isa, 2022. "Perceived Risk for Dengue Infection Mediates the Relationship between Attitude and Practice for Dengue Prevention: A Study in Seremban, Malaysia," IJERPH, MDPI, vol. 19(20), pages 1-17, October.
    3. Sakirul Khan & Sheikh Mohammad Fazle Akbar & Takaaki Yahiro & Mamun Al Mahtab & Kazunori Kimitsuki & Takehiro Hashimoto & Akira Nishizono, 2022. "Dengue Infections during COVID-19 Period: Reflection of Reality or Elusive Data Due to Effect of Pandemic," IJERPH, MDPI, vol. 19(17), pages 1-12, August.
    4. Shengzhang Dong & George Dimopoulos, 2023. "Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    7. Hone-Jay Chu & Bo-Cheng Lin & Ming-Run Yu & Ta-Chien Chan, 2016. "Minimizing Spatial Variability of Healthcare Spatial Accessibility—The Case of a Dengue Fever Outbreak," IJERPH, MDPI, vol. 13(12), pages 1-11, December.
    8. Cheng-Te Lin & Yu-Sheng Huang & Lu-Wen Liao & Chung-Te Ting, 2020. "Measuring Consumer Willingness to Pay to Reduce Health Risks of Contracting Dengue Fever," IJERPH, MDPI, vol. 17(5), pages 1-15, March.
    9. Amy R. Krystosik & Andrew Curtis & A. Desiree LaBeaud & Diana M. Dávalos & Robinson Pacheco & Paola Buritica & Álvaro A. Álvarez & Madhav P. Bhatta & Jorge Humberto Rojas Palacios & Mark A. James, 2018. "Neighborhood Violence Impacts Disease Control and Surveillance: Case Study of Cali, Colombia from 2014 to 2016," IJERPH, MDPI, vol. 15(10), pages 1-20, September.
    10. Laith Hussain-Alkhateeb & Tatiana Rivera Ramírez & Axel Kroeger & Ernesto Gozzer & Silvia Runge-Ranzinger, 2021. "Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(9), pages 1-25, September.
    11. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    12. Benjamin Lopez-Jimena & Michaël Bekaert & Mohammed Bakheit & Sieghard Frischmann & Pranav Patel & Etienne Simon-Loriere & Louis Lambrechts & Veasna Duong & Philippe Dussart & Graham Harold & Cheikh Fa, 2018. "Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(5), pages 1-22, May.
    13. Adriana Zubieta-Zavala & Guillermo Salinas-Escudero & Adrian Ramírez-Chávez & Luis García-Valladares & Malaquias López-Cervantes & Juan Guillermo López Yescas & Luis Durán-Arenas, 2016. "Calculation of the Average Cost per Case of Dengue Fever in Mexico Using a Micro-Costing Approach," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 10(8), pages 1-14, August.
    14. Fazli Wahid & Dr.Sajjad Ali & Jan Muhammad, 2021. "Effective Sources of Information in Winter Seasonal Diseases: The Perception of Residents of District Buner, KP," Journal of Media & Communication (JMC), Ilma University, Faculty of Media & Design, vol. 1(2), pages 215-229.
    15. Maria Glória Teixeira & Enny S Paixão & Maria da Conceição N Costa & Rivaldo V Cunha & Luciano Pamplona & Juarez P Dias & Camila A Figueiredo & Maria Aparecida A Figueiredo & Ronald Blanton & Vanessa , 2015. "Arterial Hypertension and Skin Allergy Are Risk Factors for Progression from Dengue to Dengue Hemorrhagic Fever: A Case Control Study," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(5), pages 1-8, May.
    16. Joseph L Servadio & Gustavo Machado & Julio Alvarez & Francisco Edilson de Ferreira Lima Júnior & Renato Vieira Alves & Matteo Convertino, 2020. "Information differences across spatial resolutions and scales for disease surveillance and analysis: The case of Visceral Leishmaniasis in Brazil," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-17, July.
    17. Maneerat, Somsakun & Daudé, Eric, 2016. "A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas," Ecological Modelling, Elsevier, vol. 333(C), pages 66-78.
    18. Mohd Hanief Ahmad & Mohd Ismail Ibrahim & Zeehaida Mohamed & Nabilah Ismail & Muhammad Amiruddin Abdullah & Rafidah Hanim Shueb & Mohd Nazri Shafei, 2018. "The Sensitivity, Specificity and Accuracy of Warning Signs in Predicting Severe Dengue, the Severe Dengue Prevalence and Its Associated Factors," IJERPH, MDPI, vol. 15(9), pages 1-12, September.
    19. Zhichao Li, 2022. "Forecasting Weekly Dengue Cases by Integrating Google Earth Engine-Based Risk Predictor Generation and Google Colab-Based Deep Learning Modeling in Fortaleza and the Federal District, Brazil," IJERPH, MDPI, vol. 19(20), pages 1-16, October.
    20. Peter Winskill & Danilo O Carvalho & Margareth L Capurro & Luke Alphey & Christl A Donnelly & Andrew R McKemey, 2015. "Dispersal of Engineered Male Aedes aegypti Mosquitoes," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(11), pages 1-18, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0006650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.