IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0002952.html
   My bibliography  Save this article

Variability in Dengue Titer Estimates from Plaque Reduction Neutralization Tests Poses a Challenge to Epidemiological Studies and Vaccine Development

Author

Listed:
  • Henrik Salje
  • Isabel Rodríguez-Barraquer
  • Kaitlin Rainwater-Lovett
  • Ananda Nisalak
  • Butsaya Thaisomboonsuk
  • Stephen J Thomas
  • Stefan Fernandez
  • Richard G Jarman
  • In-Kyu Yoon
  • Derek A T Cummings

Abstract

Background: Accurate determination of neutralization antibody titers supports epidemiological studies of dengue virus transmission and vaccine trials. Neutralization titers measured using the plaque reduction neutralization test (PRNT) are believed to provide a key measure of immunity to dengue viruses, however, the assay's variability is poorly understood, making it difficult to interpret the significance of any assay reading. In addition there is limited standardization of the neutralization evaluation point or statistical model used to estimate titers across laboratories, with little understanding of the optimum approach. Methodology/Principal Findings: We used repeated assays on the same two pools of serum using five different viruses (2,319 assays) to characterize the variability in the technique under identical experimental conditions. We also assessed the performance of multiple statistical models to interpolate continuous values of neutralization titer from discrete measurements from serial dilutions. We found that the variance in plaque reductions for individual dilutions was 0.016, equivalent to a 95% confidence interval of 0.45–0.95 for an observed plaque reduction of 0.7. We identified PRNT75 as the optimum evaluation point with a variance of 0.025 (log10 scale), indicating a titer reading of 1∶500 had 95% confidence intervals of 1∶240–1∶1000 (2.70±0.31 on a log10 scale). The choice of statistical model was not important for the calculation of relative titers, however, cloglog regression out-performed alternatives where absolute titers are of interest. Finally, we estimated that only 0.7% of assays would falsely detect a four-fold difference in titers between acute and convalescent sera where no true difference exists. Conclusions: Estimating and reporting assay uncertainty will aid the interpretation of individual titers. Laboratories should perform a small number of repeat assays to generate their own variability estimates. These could be used to calculate confidence intervals for all reported titers and allow benchmarking of assay performance. Author Summary: Plaque Reduction Neutralization Tests (PRNTs) remain the most popular approach to characterize an individual's ability to neutralize dengue viruses and are widely used in both epidemiological studies and vaccine trials. However, the underlying variability in the assay is poorly understood, hindering the interpretation of PRNT titer estimates. Further, there is little standardization of its use across laboratories limiting our ability to compare results across settings. Here we used many repeated experiments on the same serum under identical laboratory conditions to estimate the variance in titer measurements. We also identified both the optimum PRNT evaluation point and statistical model to calculate titers. By providing an estimate of the variability in the assay, laboratories will be able to provide a confidence bound on individual PRNT readings. In addition by providing recommended statistical approaches that could be used across laboratories, our findings will help the standardization of the assay across settings.

Suggested Citation

  • Henrik Salje & Isabel Rodríguez-Barraquer & Kaitlin Rainwater-Lovett & Ananda Nisalak & Butsaya Thaisomboonsuk & Stephen J Thomas & Stefan Fernandez & Richard G Jarman & In-Kyu Yoon & Derek A T Cummin, 2014. "Variability in Dengue Titer Estimates from Plaque Reduction Neutralization Tests Poses a Challenge to Epidemiological Studies and Vaccine Development," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 8(6), pages 1-10, June.
  • Handle: RePEc:plo:pntd00:0002952
    DOI: 10.1371/journal.pntd.0002952
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0002952
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0002952&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0002952?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sakirul Khan & Sheikh Mohammad Fazle Akbar & Takaaki Yahiro & Mamun Al Mahtab & Kazunori Kimitsuki & Takehiro Hashimoto & Akira Nishizono, 2022. "Dengue Infections during COVID-19 Period: Reflection of Reality or Elusive Data Due to Effect of Pandemic," IJERPH, MDPI, vol. 19(17), pages 1-12, August.
    2. Shengzhang Dong & George Dimopoulos, 2023. "Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    5. Hone-Jay Chu & Bo-Cheng Lin & Ming-Run Yu & Ta-Chien Chan, 2016. "Minimizing Spatial Variability of Healthcare Spatial Accessibility—The Case of a Dengue Fever Outbreak," IJERPH, MDPI, vol. 13(12), pages 1-11, December.
    6. Cheng-Te Lin & Yu-Sheng Huang & Lu-Wen Liao & Chung-Te Ting, 2020. "Measuring Consumer Willingness to Pay to Reduce Health Risks of Contracting Dengue Fever," IJERPH, MDPI, vol. 17(5), pages 1-15, March.
    7. Amy R. Krystosik & Andrew Curtis & A. Desiree LaBeaud & Diana M. Dávalos & Robinson Pacheco & Paola Buritica & Álvaro A. Álvarez & Madhav P. Bhatta & Jorge Humberto Rojas Palacios & Mark A. James, 2018. "Neighborhood Violence Impacts Disease Control and Surveillance: Case Study of Cali, Colombia from 2014 to 2016," IJERPH, MDPI, vol. 15(10), pages 1-20, September.
    8. Laith Hussain-Alkhateeb & Tatiana Rivera Ramírez & Axel Kroeger & Ernesto Gozzer & Silvia Runge-Ranzinger, 2021. "Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(9), pages 1-25, September.
    9. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    10. Gerhart Knerer & Christine S M Currie & Sally C Brailsford, 2020. "The economic impact and cost-effectiveness of combined vector-control and dengue vaccination strategies in Thailand: results from a dynamic transmission model," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(10), pages 1-32, October.
    11. Benjamin Lopez-Jimena & Michaël Bekaert & Mohammed Bakheit & Sieghard Frischmann & Pranav Patel & Etienne Simon-Loriere & Louis Lambrechts & Veasna Duong & Philippe Dussart & Graham Harold & Cheikh Fa, 2018. "Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(5), pages 1-22, May.
    12. Adriana Zubieta-Zavala & Guillermo Salinas-Escudero & Adrian Ramírez-Chávez & Luis García-Valladares & Malaquias López-Cervantes & Juan Guillermo López Yescas & Luis Durán-Arenas, 2016. "Calculation of the Average Cost per Case of Dengue Fever in Mexico Using a Micro-Costing Approach," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 10(8), pages 1-14, August.
    13. Fazli Wahid & Dr.Sajjad Ali & Jan Muhammad, 2021. "Effective Sources of Information in Winter Seasonal Diseases: The Perception of Residents of District Buner, KP," Journal of Media & Communication (JMC), Ilma University, Faculty of Media & Design, vol. 1(2), pages 215-229.
    14. Maria Glória Teixeira & Enny S Paixão & Maria da Conceição N Costa & Rivaldo V Cunha & Luciano Pamplona & Juarez P Dias & Camila A Figueiredo & Maria Aparecida A Figueiredo & Ronald Blanton & Vanessa , 2015. "Arterial Hypertension and Skin Allergy Are Risk Factors for Progression from Dengue to Dengue Hemorrhagic Fever: A Case Control Study," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(5), pages 1-8, May.
    15. Maneerat, Somsakun & Daudé, Eric, 2016. "A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas," Ecological Modelling, Elsevier, vol. 333(C), pages 66-78.
    16. Mohd Hanief Ahmad & Mohd Ismail Ibrahim & Zeehaida Mohamed & Nabilah Ismail & Muhammad Amiruddin Abdullah & Rafidah Hanim Shueb & Mohd Nazri Shafei, 2018. "The Sensitivity, Specificity and Accuracy of Warning Signs in Predicting Severe Dengue, the Severe Dengue Prevalence and Its Associated Factors," IJERPH, MDPI, vol. 15(9), pages 1-12, September.
    17. Zhichao Li, 2022. "Forecasting Weekly Dengue Cases by Integrating Google Earth Engine-Based Risk Predictor Generation and Google Colab-Based Deep Learning Modeling in Fortaleza and the Federal District, Brazil," IJERPH, MDPI, vol. 19(20), pages 1-16, October.
    18. Peter Winskill & Danilo O Carvalho & Margareth L Capurro & Luke Alphey & Christl A Donnelly & Andrew R McKemey, 2015. "Dispersal of Engineered Male Aedes aegypti Mosquitoes," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(11), pages 1-18, November.
    19. Kuan-Meng Soo & Bahariah Khalid & Siew-Mooi Ching & Hui-Yee Chee, 2016. "Meta-Analysis of Dengue Severity during Infection by Different Dengue Virus Serotypes in Primary and Secondary Infections," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-16, May.
    20. Renaud Marti & Zhichao Li & Thibault Catry & Emmanuel Roux & Morgan Mangeas & Pascal Handschumacher & Jean Gaudart & Annelise Tran & Laurent Demagistri & Jean-François Faure & José Joaquín Carvajal & , 2020. "A Mapping Review on Urban Landscape Factors of Dengue Retrieved from Earth Observation Data, GIS Techniques, and Survey Questionnaires," Post-Print hal-02682042, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0002952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.