IDEAS home Printed from https://ideas.repec.org/a/plo/pdig00/0000493.html
   My bibliography  Save this article

An interpretable framework to identify responsive subgroups from clinical trials regarding treatment effects: Application to treatment of intracerebral hemorrhage

Author

Listed:
  • Yaobin Ling
  • Muhammad Bilal Tariq
  • Kaichen Tang
  • Jaroslaw Aronowski
  • Yang Fann
  • Sean I Savitz
  • Xiaoqian Jiang
  • Yejin Kim

Abstract

Randomized Clinical trials (RCT) suffer from a high failure rate which could be caused by heterogeneous responses to treatment. Despite many models being developed to estimate heterogeneous treatment effects (HTE), there remains a lack of interpretable methods to identify responsive subgroups. This work aims to develop a framework to identify subgroups based on treatment effects that prioritize model interpretability. The proposed framework leverages an ensemble uplift tree method to generate descriptive decision rules that separate samples given estimated responses to the treatment. Subsequently, we select a complementary set of these decision rules and rank them using a sparse linear model. To address the trial’s limited sample size problem, we proposed a data augmentation strategy by borrowing control patients from external studies and generating synthetic data. We apply the proposed framework to a failed randomized clinical trial for investigating an intracerebral hemorrhage therapy plan. The Qini-scores show that the proposed data augmentation strategy plan can boost the model’s performance and the framework achieves greater interpretability by selecting complementary descriptive rules without compromising estimation quality. Our model derives clinically meaningful subgroups. Specifically, we find those patients with Diastolic Blood Pressure≥70 mm hg and Systolic Blood Pressure

Suggested Citation

  • Yaobin Ling & Muhammad Bilal Tariq & Kaichen Tang & Jaroslaw Aronowski & Yang Fann & Sean I Savitz & Xiaoqian Jiang & Yejin Kim, 2024. "An interpretable framework to identify responsive subgroups from clinical trials regarding treatment effects: Application to treatment of intracerebral hemorrhage," PLOS Digital Health, Public Library of Science, vol. 3(5), pages 1-17, May.
  • Handle: RePEc:plo:pdig00:0000493
    DOI: 10.1371/journal.pdig.0000493
    as

    Download full text from publisher

    File URL: https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000493
    Download Restriction: no

    File URL: https://journals.plos.org/digitalhealth/article/file?id=10.1371/journal.pdig.0000493&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pdig.0000493?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicolás M Ballarini & Gerd K Rosenkranz & Thomas Jaki & Franz König & Martin Posch, 2018. "Subgroup identification in clinical trials via the predicted individual treatment effect," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-22, October.
    2. Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    2. Martin Ravallion, 2022. "On the Gains from Tradable Benefits‐in‐kind: Evidence for Workfare in India," Economica, London School of Economics and Political Science, vol. 89(355), pages 770-787, July.
    3. Peter Abell & Ofer Engel, 2021. "Subjective Causality and Counterfactuals in the Social Sciences: Toward an Ethnographic Causality?," Sociological Methods & Research, , vol. 50(4), pages 1842-1862, November.
    4. Shonosuke Sugasawa & Hisashi Noma, 2021. "Efficient screening of predictive biomarkers for individual treatment selection," Biometrics, The International Biometric Society, vol. 77(1), pages 249-257, March.
    5. Salvatore Bimonte & Antonella D’Agostino, 2021. "Tourism development and residents’ well-being: Comparing two seaside destinations in Italy," Tourism Economics, , vol. 27(7), pages 1508-1525, November.
    6. Mealli Fabrizia & Mattei Alessandra, 2012. "A Refreshing Account of Principal Stratification," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, April.
    7. Antonio R. Linero, 2022. "Simulation‐based estimators of analytically intractable causal effects," Biometrics, The International Biometric Society, vol. 78(3), pages 1001-1017, September.
    8. Wu, Guojun & Song, Ge & Lv, Xiaoxiang & Luo, Shikai & Shi, Chengchun & Zhu, Hongtu, 2023. "DNet: distributional network for distributional individualized treatment effects," LSE Research Online Documents on Economics 122895, London School of Economics and Political Science, LSE Library.
    9. Berger, Marius & Hottenrott, Hanna, 2021. "Start-up subsidies and the sources of venture capital," Journal of Business Venturing Insights, Elsevier, vol. 16(C).
    10. Sahar Saeed & Erica E. M. Moodie & Erin C. Strumpf & Marina B. Klein, 2018. "Segmented generalized mixed effect models to evaluate health outcomes," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 63(4), pages 547-551, May.
    11. Afzal, Hania & Hawkins, Jason, 2024. "Electric vehicle and supply equipment adoption dynamics in the United States," Energy Policy, Elsevier, vol. 193(C).
    12. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    13. Hodula, Martin & Melecký, Martin & Pfeifer, Lukáš & Szabo, Milan, 2023. "Cooling the mortgage loan market: The effect of borrower-based limits on new mortgage lending," Journal of International Money and Finance, Elsevier, vol. 132(C).
    14. Yiran Zhang & Andrew Ying & Steve Edland & Lon White & Ronghui Xu, 2024. "Marginal Structural Illness-Death Models for Semi-competing Risks Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(3), pages 668-692, December.
    15. Manuel S. González Canché, 2017. "Financial Benefits of Rapid Student Loan Repayment: An Analytic Framework Employing Two Decades of Data," The ANNALS of the American Academy of Political and Social Science, , vol. 671(1), pages 154-182, May.
    16. Damian Clarke & Daniel Paila~nir & Susan Athey & Guido Imbens, 2023. "Synthetic Difference In Differences Estimation," Papers 2301.11859, arXiv.org, revised Feb 2023.
    17. repec:osf:socarx:x4526_v1 is not listed on IDEAS
    18. Almer, Christian & Winkler, Ralph, 2017. "Analyzing the effectiveness of international environmental policies: The case of the Kyoto Protocol," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 125-151.
    19. Sanford C. Gordon & Hannah K. Simpson, 2020. "Causes, theories, and the past in political science," Public Choice, Springer, vol. 185(3), pages 315-333, December.
    20. Lechner, Michael, 2008. "A note on endogenous control variables in causal studies," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 190-195, February.
    21. Song Tong & Kai Mao & Zhen Huang & Yukun Zhao & Kaiping Peng, 2024. "Automating psychological hypothesis generation with AI: when large language models meet causal graph," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pdig00:0000493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: digitalhealth (email available below). General contact details of provider: https://journals.plos.org/digitalhealth .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.