Carbon dioxide removal–What’s worth doing? A biophysical and public need perspective
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pclm.0000124
Download full text from publisher
References listed on IDEAS
- Bode, Sven & Jung, Martina, 2005. "Carbon dioxide capture and storage (CCS): liability for non-permanence under the UNFCCC," HWWA Discussion Papers 325, Hamburg Institute of International Economics (HWWA).
- Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
- Gerhard Colm, 1936. "Theory of Public Expenditures," The ANNALS of the American Academy of Political and Social Science, , vol. 183(1), pages 1-11, January.
- A. Chabbi & J. Lehmann & P. Ciais & H. W. Loescher & M. F. Cotrufo & A. Don & M. SanClements & L. Schipper & J. Six & P. Smith & C. Rumpel, 2017. "Aligning agriculture and climate policy," Nature Climate Change, Nature, vol. 7(5), pages 307-309, May.
- Wang, Nan & Akimoto, Keigo & Nemet, Gregory F., 2021. "What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects," Energy Policy, Elsevier, vol. 158(C).
- Andreas Lichtenberger & Joao Paulo Braga & Willi Semmler, 2022. "Green Bonds for the Transition to a Low-Carbon Economy," SCEPA working paper series. 2022-02, Schwartz Center for Economic Policy Analysis (SCEPA), The New School.
- Hall, Charles A.S. & Lambert, Jessica G. & Balogh, Stephen B., 2014. "EROI of different fuels and the implications for society," Energy Policy, Elsevier, vol. 64(C), pages 141-152.
- Mark Peplow, 2022. "The race to upcycle CO2 into fuels, concrete and more," Nature, Nature, vol. 603(7903), pages 780-783, March.
- June Sekera, 2017. "Missing from the Mainstream: The Biophysical Basis of Production and the Public Economy," GDAE Working Papers 17-02, GDAE, Tufts University.
- Barbara Haya & Danny Cullenward & Aaron L. Strong & Emily Grubert & Robert Heilmayr & Deborah A. Sivas & Michael Wara, 2020. "Managing uncertainty in carbon offsets: insights from California’s standardized approach," Climate Policy, Taylor & Francis Journals, vol. 20(9), pages 1112-1126, October.
- Pete Smith & Steven J. Davis & Felix Creutzig & Sabine Fuss & Jan Minx & Benoit Gabrielle & Etsushi Kato & Robert B. Jackson & Annette Cowie & Elmar Kriegler & Detlef P. van Vuuren & Joeri Rogelj & Ph, 2016. "Biophysical and economic limits to negative CO2 emissions," Nature Climate Change, Nature, vol. 6(1), pages 42-50, January.
- Bode, Sven & Jung, Martina, 2005. "Carbon Dioxide Capture and Storage (CCS) - Liability for Non-Permanence under the UNFCCC," Discussion Paper Series 26131, Hamburg Institute of International Economics.
- Andreas Lichtenberger & Joao Paulo Braga & Willi Semmler, 2022. "Green Bonds for the Transition to a Low-Carbon Economy," Econometrics, MDPI, vol. 10(1), pages 1-31, March.
- Niall Mac Dowell & Paul S. Fennell & Nilay Shah & Geoffrey C. Maitland, 2017. "The role of CO2 capture and utilization in mitigating climate change," Nature Climate Change, Nature, vol. 7(4), pages 243-249, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Günther, Philipp & Ekardt, Felix, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(12), pages 1-29.
- Nair, Purusothmn Nair S Bhasker & Tan, Raymond R. & Foo, Dominic C.Y., 2022. "Extended graphical approach for the implementation of energy-consuming negative emission technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- P. A. Turner & C. B. Field & D. B. Lobell & D. L. Sanchez & K. J. Mach, 2018. "Unprecedented rates of land-use transformation in modelled climate change mitigation pathways," Nature Sustainability, Nature, vol. 1(5), pages 240-245, May.
- McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
- Braga, Joao Paulo & Chen, Pu & Semmler, Willi, 2025. "Central banks, climate risks, and energy transition—a dynamic macro model and econometric evidence," Macroeconomic Dynamics, Cambridge University Press, vol. 29, pages 1-1, January.
- Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Amit Roy & Pu Chen & Willi Semmler, 2025. "Carbon Tax Versus Renewable Energy Innovation: Theoretical Insights and Empirical Evidence," Environmetrics, John Wiley & Sons, Ltd., vol. 36(3), April.
- Motlaghzadeh, Kasra & Schweizer, Vanessa & Craik, Neil & Moreno-Cruz, Juan, 2023. "Key uncertainties behind global projections of direct air capture deployment," Applied Energy, Elsevier, vol. 348(C).
- Eli Mitchell-Larson & Myles Allen, 2022. "Prosets: a new financing instrument to deliver a durable net zero transition," Climatic Change, Springer, vol. 174(1), pages 1-13, September.
- Philipp Günther & Felix Ekardt, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," Land, MDPI, vol. 11(12), pages 1-29, November.
- Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential for hydrogen and Power-to-Liquid in a low-carbon EU energy system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 617-639.
- Migo-Sumagang, Maria Victoria & Tan, Raymond R. & Aviso, Kathleen B., 2023. "A multi-period model for optimizing negative emission technology portfolios with economic and carbon value discount rates," Energy, Elsevier, vol. 275(C).
- Ayami Hayashi & Fuminori Sano & Takashi Homma & Keigo Akimoto, 2023. "Mitigating trade-offs between global food access and net-zero emissions: the potential contribution of direct air carbon capture and storage," Climatic Change, Springer, vol. 176(5), pages 1-19, May.
- Khoong, Wei Kit & Bellam, Sreenivasulu, 2024. "Evaluating the growth of Singapore's solar electricity capacity towards Green Plan 2030 targets and beyond using system dynamics modelling approach," Applied Energy, Elsevier, vol. 376(PA).
- Jonathan Dumas & Antoine Dubois & Paolo Thiran & Pierre Jacques & Francesco Contino & Bertrand Cornélusse & Gauthier Limpens, 2022. "The Energy Return on Investment of Whole-Energy Systems: Application to Belgium," Biophysical Economics and Resource Quality, Springer, vol. 7(4), pages 1-34, December.
- Tiziano Gomiero, 2015. "Are Biofuels an Effective and Viable Energy Strategy for Industrialized Societies? A Reasoned Overview of Potentials and Limits," Sustainability, MDPI, vol. 7(7), pages 1-31, June.
- Florian Fizaine & Victor Court, 2016. "The energy-economic growth relationship: a new insight from the EROI perspective," Working Papers 1601, Chaire Economie du climat.
- Lukáš Režný & Vladimír Bureš, 2019. "Energy Transition Scenarios and Their Economic Impacts in the Extended Neoclassical Model of Economic Growth," Sustainability, MDPI, vol. 11(13), pages 1-25, July.
- Liu, Feng & van den Bergh, Jeroen & Wei, Yihang, 2024. "Testing mechanisms through which China's ETS promotes a low-carbon transition," Energy Economics, Elsevier, vol. 132(C).
- Charles Guay-Boutet, 2023. "Estimating the Disaggregated Standard EROI of Canadian Oil Sands Extracted via Open-pit Mining, 1997–2016," Biophysical Economics and Resource Quality, Springer, vol. 8(1), pages 1-21, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pclm00:0000124. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: climate (email available below). General contact details of provider: https://journals.plos.org/climate .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.