IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1012891.html
   My bibliography  Save this article

Emergence of cooperation promoted by higher-order strategy updates

Author

Listed:
  • Dini Wang
  • Peng Yi
  • Yiguang Hong
  • Jie Chen
  • Gang Yan

Abstract

Cooperation is fundamental to human societies, and the interaction structure among individuals profoundly shapes its emergence and evolution. In real-world scenarios, cooperation prevails in multi-group (higher-order) populations, beyond just dyadic behaviors. Despite recent studies on group dilemmas in higher-order networks, the exploration of cooperation driven by higher-order strategy updates remains limited due to the intricacy and indivisibility of group-wise interactions. Here we investigate four categories of higher-order mechanisms for strategy updates in public goods games and establish their mathematical conditions for the emergence of cooperation. Such conditions uncover the impact of both higher-order strategy updates and network properties on evolutionary outcomes, notably highlighting the enhancement of cooperation by overlaps between groups. Interestingly, we discover that the group-mutual comparison update – selecting a high-fitness group and then imitating a random individual within this group – can prominently promote cooperation. Our analyses further unveil that, compared to pairwise interactions, higher-order strategy updates generally improve cooperation in most higher-order networks. These findings underscore the pivotal role of higher-order strategy updates in fostering collective cooperation in complex social systems.Author summary: Human societies often organize and cooperate within social groups, where relatives, friends, neighbors, and colleagues influence behavior at both group and individual levels. Individuals may exhibit biased or neutral attitudes when selecting a neighboring group and then a peer within it for imitation or comparison, a process termed as higher-order strategy update. These selection preferences originate from four personality types: aggressive, open-minded, myopic, and passive. This work demonstrates that the open-minded type – indiscriminately imitating a peer within a well-performing group – significantly promotes cooperation. The mathematical framework proposed in this study deepens the understanding of how decision-making within higher-order structures affects the emergence and spread of cooperative behaviors.

Suggested Citation

  • Dini Wang & Peng Yi & Yiguang Hong & Jie Chen & Gang Yan, 2025. "Emergence of cooperation promoted by higher-order strategy updates," PLOS Computational Biology, Public Library of Science, vol. 21(8), pages 1-21, August.
  • Handle: RePEc:plo:pcbi00:1012891
    DOI: 10.1371/journal.pcbi.1012891
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012891
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1012891&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1012891?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yishen Jiang & Xin Wang & Longzhao Liu & Ming Wei & Jingwu Zhao & Zhiming Zheng & Shaoting Tang, 2023. "Nonlinear eco-evolutionary games with global environmental fluctuations and local environmental feedbacks," PLOS Computational Biology, Public Library of Science, vol. 19(6), pages 1-20, June.
    2. Martin A. Nowak & Akira Sasaki & Christine Taylor & Drew Fudenberg, 2004. "Emergence of cooperation and evolutionary stability in finite populations," Nature, Nature, vol. 428(6983), pages 646-650, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qiushuang & Chen, Xiaojie & Szolnoki, Attila, 2025. "Coevolutionary dynamics of feedback-evolving games in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
    2. Chen, Yunong & Belmonte, Andrew & Griffin, Christopher, 2021. "Imitation of success leads to cost of living mediated fairness in the Ultimatum Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    3. Sergio Currarini & Carmen Marchiori & Alessandro Tavoni, 2016. "Network Economics and the Environment: Insights and Perspectives," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(1), pages 159-189, September.
    4. Christian Hilbe & Moshe Hoffman & Martin A. Nowak, 2015. "Cooperate without Looking in a Non-Repeated Game," Games, MDPI, vol. 6(4), pages 1-15, September.
    5. Takuya Sekiguchi, 2023. "Fixation Probabilities of Strategies for Trimatrix Games and Their Applications to Triadic Conflict," Dynamic Games and Applications, Springer, vol. 13(3), pages 1005-1033, September.
    6. Te Wu & Feng Fu & Long Wang, 2011. "Moving Away from Nasty Encounters Enhances Cooperation in Ecological Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-7, November.
    7. Konrad, Kai A. & Morath, Florian, 2020. "The Volunteer’s Dilemma in Finite Populations," CEPR Discussion Papers 15536, C.E.P.R. Discussion Papers.
    8. M. Kleshnina & K. Kaveh & K. Chatterjee, 2020. "The role of behavioural plasticity in finite vs infinite populations," Papers 2009.13160, arXiv.org.
    9. Floriana Gargiulo & José J Ramasco, 2012. "Influence of Opinion Dynamics on the Evolution of Games," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    10. Campos, Daniel & Llebot, Josep E. & Méndez, Vicenç, 2008. "Limited resources and evolutionary learning may help to understand the mistimed reproduction in birds caused by climate change," Theoretical Population Biology, Elsevier, vol. 74(1), pages 16-21.
    11. Martina Testori & Hedwig Eisenbarth & Rebecca B Hoyle, 2022. "Selfish risk-seeking can provide an evolutionary advantage in a conditional public goods game," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-18, January.
    12. Huang, Keke & Liu, Yishun & Zhang, Yichi & Yang, Chunhua & Wang, Zhen, 2018. "Understanding cooperative behavior of agents with heterogeneous perceptions in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 234-240.
    13. Zhao, Yuntong & Du, Yushen, 2021. "Technical standard competition: An ecosystem-view analysis based on stochastic evolutionary game theory," Technology in Society, Elsevier, vol. 67(C).
    14. Sun, Peiyuan & Liu, Xuesong & Wang, Enze & He, Mingfeng & Pan, Qiuhui, 2017. "Evolution of cooperation in a spatial structure with compensation mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 503-507.
    15. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    16. Chaitanya S. Gokhale & Joseph Bulbulia & Marcus Frean, 2022. "Collective narratives catalyse cooperation," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-9, December.
    17. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    18. John T. Scholz & Cheng‐Lung Wang, 2009. "Learning to Cooperate: Learning Networks and the Problem of Altruism," American Journal of Political Science, John Wiley & Sons, vol. 53(3), pages 572-587, July.
    19. Zhao, Zhengwu & Zhang, Chunyan, 2023. "The mechanisms of labor division from the perspective of task urgency and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    20. Xiudeng Zheng & Ross Cressman & Yi Tao, 2011. "The Diffusion Approximation of Stochastic Evolutionary Game Dynamics: Mean Effective Fixation Time and the Significance of the One-Third Law," Dynamic Games and Applications, Springer, vol. 1(3), pages 462-477, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.