IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1012616.html
   My bibliography  Save this article

Deep neural networks for endemic measles dynamics: Comparative analysis and integration with mechanistic models

Author

Listed:
  • Wyatt G Madden
  • Wei Jin
  • Benjamin Lopman
  • Andreas Zufle
  • Benjamin Dalziel
  • C Jessica E. Metcalf
  • Bryan T Grenfell
  • Max S Y Lau

Abstract

Measles is an important infectious disease system both for its burden on public health and as an opportunity for studying nonlinear spatio-temporal disease dynamics. Traditional mechanistic models often struggle to fully capture the complex nonlinear spatio-temporal dynamics inherent in measles outbreaks. In this paper, we first develop a high-dimensional feed-forward neural network model with spatial features (SFNN) to forecast endemic measles outbreaks and systematically compare its predictive power with that of a classical mechanistic model (TSIR). We illustrate the utility of our model using England and Wales measles data from 1944-1965. These data present multiple modeling challenges due to the interplay between metapopulations, seasonal trends, and nonlinear dynamics related to demographic changes. Our results show that while the TSIR model yields similarly performant short-term (1 to 2 biweeks ahead) forecasts for highly populous cities, our neural network model (SFNN) consistently achieves lower root mean squared error (RMSE) across other forecasting windows. Furthermore, we show that our spatial-feature neural network model, without imposing mechanistic assumptions a priori, can uncover gravity-model-like spatial hierarchy of measles spread in which major cities play an important role in driving regional outbreaks. We then turn our attention to integrative approaches that combine mechanistic and machine learning models. Specifically, we investigate how the TSIR can be utilized to improve a state-of-the-art approach known as Physics-Informed-Neural-Networks (PINN) which explicitly combines compartmental models and neural networks. Our results show that the TSIR can facilitate the reconstruction of latent susceptible dynamics, thereby enhancing both forecasts in terms of mean absolute error (MAE) and parameter inference of measles dynamics within the PINN. In summary, our results show that appropriately designed neural network-based models can outperform traditional mechanistic models for short to long-term forecasts, while simultaneously providing mechanistic interpretability. Our work also provides valuable insights into more effectively integrating machine learning models with mechanistic models to enhance public health responses to measles and similar infectious disease systems.Author summary: Mechanistic models have been foundational in developing an understanding of the transmission dynamics of infectious diseases including measles. In contrast to their mechanistic counterparts, machine learning techniques including neural networks have primarily focused on improving forecasting accuracy without explicitly inferring transmission dynamics. Effectively integrating these two modeling approaches remains a central challenge. In this paper, we first develop a high-dimensional neural network model to forecast spatiotemporal endemic measles outbreaks and systematically compare its predictive power with that of a classical mechanistic model (TSIR). We illustrate the utility of our model using a detailed dataset describing measles outbreaks in England and Wales from 1944–1965, one of the best-documented and most-studied nonlinear infectious disease systems. Our results show that overall, our neural network model outperforms the TSIR in all forecasting windows. Furthermore, we show that our neural network model can uncover the mechanism of hierarchical spread of measles where major cities drive regional outbreaks. We then develop an integrative approach that explicitly and effectively combines mechanistic and machine learning models, improving simultaneously both forecasting and inference. In summary, our work offers valuable insights into the effective utilization of machine learning models, and integration with mechanistic models, for enhancing outbreak responses to measles and similar infectious disease systems.

Suggested Citation

  • Wyatt G Madden & Wei Jin & Benjamin Lopman & Andreas Zufle & Benjamin Dalziel & C Jessica E. Metcalf & Bryan T Grenfell & Max S Y Lau, 2024. "Deep neural networks for endemic measles dynamics: Comparative analysis and integration with mechanistic models," PLOS Computational Biology, Public Library of Science, vol. 20(11), pages 1-17, November.
  • Handle: RePEc:plo:pcbi00:1012616
    DOI: 10.1371/journal.pcbi.1012616
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012616
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1012616&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1012616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew J. Ferrari & Rebecca F. Grais & Nita Bharti & Andrew J. K. Conlan & Ottar N. Bjørnstad & Lara J. Wolfson & Philippe J. Guerin & Ali Djibo & Bryan T. Grenfell, 2008. "The dynamics of measles in sub-Saharan Africa," Nature, Nature, vol. 451(7179), pages 679-684, February.
    2. repec:plo:pcbi00:1004655 is not listed on IDEAS
    3. Zhao Chen & Yang Liu & Hao Sun, 2021. "Physics-informed learning of governing equations from scarce data," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. repec:plo:pmed00:1001958 is not listed on IDEAS
    5. B. F. Finkenstädt & B. T. Grenfell, 2000. "Time series modelling of childhood diseases: a dynamical systems approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(2), pages 187-205.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander D Becker & Bryan T Grenfell, 2017. "tsiR: An R package for time-series Susceptible-Infected-Recovered models of epidemics," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-10, September.
    2. Wan Yang & Liang Wen & Shen-Long Li & Kai Chen & Wen-Yi Zhang & Jeffrey Shaman, 2017. "Geospatial characteristics of measles transmission in China during 2005−2014," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-21, April.
    3. repec:plo:pcbi00:1007305 is not listed on IDEAS
    4. repec:plo:pcbi00:1003312 is not listed on IDEAS
    5. repec:plo:pone00:0074208 is not listed on IDEAS
    6. Jijun Zhao & Xinmin Li, 2016. "Determinants of the Transmission Variation of Hand, Foot and Mouth Disease in China," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-14, October.
    7. Zhou, Taotao & Zhang, Xiaoge & Droguett, Enrique Lopez & Mosleh, Ali, 2023. "A generic physics-informed neural network-based framework for reliability assessment of multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    8. H. J. Whitaker & C. P. Farrington, 2004. "Infections with Varying Contact Rates: Application to Varicella," Biometrics, The International Biometric Society, vol. 60(3), pages 615-623, September.
    9. repec:plo:pcbi00:1006211 is not listed on IDEAS
    10. Caroline Chuard & Hannes Schwandt & Alexander D. Becker & Masahiko Haraguchi, 2022. "Economic vs. Epidemiological Approaches to Measuring the Human Capital Impacts of Infectious Disease Elimination," NBER Working Papers 30202, National Bureau of Economic Research, Inc.
    11. Se Ho Park & Seokmin Ha & Jae Kyoung Kim, 2023. "A general model-based causal inference method overcomes the curse of synchrony and indirect effect," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Julliard, Christian & Shi, Ran & Yuan, Kathy, 2023. "The spread of COVID-19 in London: Network effects and optimal lockdowns," Journal of Econometrics, Elsevier, vol. 235(2), pages 2125-2154.
    13. Lahey, Joanna N. & Wanamaker, Marianne H., 2025. "Effects of restrictive abortion legislation on cohort mortality evidence from 19th century law variation," Journal of Public Economics, Elsevier, vol. 243(C).
    14. van de Water, Antoinette & Henley, Michelle & Bates, Lucy & Slotow, Rob, 2022. "The value of elephants: A pluralist approach," Ecosystem Services, Elsevier, vol. 58(C).
    15. Victor Zakharov & Yulia Balykina & Igor Ilin & Andrea Tick, 2022. "Forecasting a New Type of Virus Spread: A Case Study of COVID-19 with Stochastic Parameters," Mathematics, MDPI, vol. 10(20), pages 1-18, October.
    16. David A Rasmussen & Oliver Ratmann & Katia Koelle, 2011. "Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-11, August.
    17. Mikael Jagan & Michelle S deJonge & Olga Krylova & David J D Earn, 2020. "Fast estimation of time-varying infectious disease transmission rates," PLOS Computational Biology, Public Library of Science, vol. 16(9), pages 1-39, September.
    18. Jiang, Yan & Yang, Wuyue & Zhu, Yi & Hong, Liu, 2023. "Entropy structure informed learning for solving inverse problems of differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    19. Xiaoyu Xie & Arash Samaei & Jiachen Guo & Wing Kam Liu & Zhengtao Gan, 2022. "Data-driven discovery of dimensionless numbers and governing laws from scarce measurements," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Rachel E. Baker & Ayesha S. Mahmud & C. Jessica E. Metcalf, 2018. "Dynamic response of airborne infections to climate change: predictions for varicella," Climatic Change, Springer, vol. 148(4), pages 547-560, June.
    21. Calsina, Àngel & Cuadrado, Sílvia & Vidiella, Blai & Sardanyés, Josep, 2023. "About ghost transients in spatial continuous media," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    22. Fernández de la Mata, Félix & Gijón, Alfonso & Molina-Solana, Miguel & Gómez-Romero, Juan, 2023. "Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    23. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    24. Liu, Cheng & Wang, Wei & Wang, Zhixia & Ding, Bei & Wu, Zhiqiang & Feng, Jingjing, 2024. "Data-driven modeling and fast adjustment for digital coded metasurfaces database: Application in adaptive electromagnetic energy harvesting," Applied Energy, Elsevier, vol. 365(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.