IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010350.html
   My bibliography  Save this article

Asymmetric and adaptive reward coding via normalized reinforcement learning

Author

Listed:
  • Kenway Louie

Abstract

Learning is widely modeled in psychology, neuroscience, and computer science by prediction error-guided reinforcement learning (RL) algorithms. While standard RL assumes linear reward functions, reward-related neural activity is a saturating, nonlinear function of reward; however, the computational and behavioral implications of nonlinear RL are unknown. Here, we show that nonlinear RL incorporating the canonical divisive normalization computation introduces an intrinsic and tunable asymmetry in prediction error coding. At the behavioral level, this asymmetry explains empirical variability in risk preferences typically attributed to asymmetric learning rates. At the neural level, diversity in asymmetries provides a computational mechanism for recently proposed theories of distributional RL, allowing the brain to learn the full probability distribution of future rewards. This behavioral and computational flexibility argues for an incorporation of biologically valid value functions in computational models of learning and decision-making.Author summary: Reinforcement learning models are widely used to characterize reward-driven learning in biological and computational agents. Standard reinforcement learning models use linear value functions, despite strong empirical evidence that biological value representations are nonlinear functions of external rewards. Here, we examine the properties of a biologically-based nonlinear reinforcement learning algorithm employing the canonical divisive normalization function, a neural computation commonly found in sensory, cognitive, and reward coding. We show that this normalized reinforcement learning algorithm implements a simple but powerful control of how reward learning reflects relative gains and losses. This property explains diverse behavioral and neural phenomena, and suggests the importance of using biologically valid value functions in computational models of learning and decision-making.

Suggested Citation

  • Kenway Louie, 2022. "Asymmetric and adaptive reward coding via normalized reinforcement learning," PLOS Computational Biology, Public Library of Science, vol. 18(7), pages 1-15, July.
  • Handle: RePEc:plo:pcbi00:1010350
    DOI: 10.1371/journal.pcbi.1010350
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010350
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010350&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010350?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeremiah Y. Cohen & Sebastian Haesler & Linh Vong & Bradford B. Lowell & Naoshige Uchida, 2012. "Neuron-type-specific signals for reward and punishment in the ventral tegmental area," Nature, Nature, vol. 482(7383), pages 85-88, February.
    2. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuchen Zhang & Wei Yang, 2022. "Breakthrough invention and problem complexity: Evidence from a quasi‐experiment," Strategic Management Journal, Wiley Blackwell, vol. 43(12), pages 2510-2544, December.
    2. Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," Journal of Banking & Finance, Elsevier, vol. 140(C).
    3. Zhang, Xi & Wang, Qin & Bi, Xiaowen & Li, Donghong & Liu, Dong & Yu, Yuanjin & Tse, Chi Kong, 2024. "Mitigating cascading failure in power grids with deep reinforcement learning-based remedial actions," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    4. Panna Hegedüs & Bálint Király & Dániel Schlingloff & Victoria Lyakhova & Anna Velencei & Írisz Szabó & Márton I. Mayer & Zsofia Zelenak & Gábor Nyiri & Balázs Hangya, 2024. "Parvalbumin-expressing basal forebrain neurons mediate learning from negative experience," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    5. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    6. Ostheimer, Julia & Chowdhury, Soumitra & Iqbal, Sarfraz, 2021. "An alliance of humans and machines for machine learning: Hybrid intelligent systems and their design principles," Technology in Society, Elsevier, vol. 66(C).
    7. Boute, Robert N. & Gijsbrechts, Joren & van Jaarsveld, Willem & Vanvuchelen, Nathalie, 2022. "Deep reinforcement learning for inventory control: A roadmap," European Journal of Operational Research, Elsevier, vol. 298(2), pages 401-412.
    8. Rui Wang & Ming Lyu & Jie Zhang, 2025. "A Multi-Robot Collaborative Exploration Method Based on Deep Reinforcement Learning and Knowledge Distillation," Mathematics, MDPI, vol. 13(1), pages 1-17, January.
    9. Zhou, Yuhao & Wang, Yanwei, 2022. "An integrated framework based on deep learning algorithm for optimizing thermochemical production in heavy oil reservoirs," Energy, Elsevier, vol. 253(C).
    10. Mandal, Ankit & Tiwari, Yash & Panigrahi, Prasanta K. & Pal, Mayukha, 2022. "Physics aware analytics for accurate state prediction of dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Terence C. Burnham & Jay Phelan, 2020. "Ordinaries," Journal of Bioeconomics, Springer, vol. 22(2), pages 63-76, July.
    12. Adnan Jafar & Alessandra Kobayati & Michael A. Tsoukas & Ahmad Haidar, 2024. "Personalized insulin dosing using reinforcement learning for high-fat meals and aerobic exercises in type 1 diabetes: a proof-of-concept trial," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Lan Luo, By & Shi, Chengchun & Wang, Jitao & Wu, Zhenke & Li, Lexin, 2025. "Multivariate dynamic mediation analysis under a reinforcement learning framework," LSE Research Online Documents on Economics 127112, London School of Economics and Political Science, LSE Library.
    14. Bossert, Leonie & Hagendorff, Thilo, 2021. "Animals and AI. The role of animals in AI research and application – An overview and ethical evaluation," Technology in Society, Elsevier, vol. 67(C).
    15. Yang, Zhengzhi & Zheng, Lei & Perc, Matjaž & Li, Yumeng, 2024. "Interaction state Q-learning promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    16. Athina Tzovara & Christoph W Korn & Dominik R Bach, 2018. "Human Pavlovian fear conditioning conforms to probabilistic learning," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-21, August.
    17. Artur Kwasek & Maria Kocot & Izabela Gontarek & Igor Protasowicki & Bartosz Blaszczak, 2024. "Negative Faces of Artificial Intelligence in the Conditions of the Knowledge-Based Economy," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 465-477.
    18. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    19. Jun Li & Wei Zhu & Jun Wang & Wenfei Li & Sheng Gong & Jian Zhang & Wei Wang, 2018. "RNA3DCNN: Local and global quality assessments of RNA 3D structures using 3D deep convolutional neural networks," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-18, November.
    20. Keller, Alexander & Dahm, Ken, 2019. "Integral equations and machine learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 2-12.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.