IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010305.html
   My bibliography  Save this article

Extracting individual characteristics from population data reveals a negative social effect during honeybee defence

Author

Listed:
  • Tatjana Petrov
  • Matej Hajnal
  • Julia Klein
  • David Šafránek
  • Morgane Nouvian

Abstract

Honeybees protect their colony against vertebrates by mass stinging and they coordinate their actions during this crucial event thanks to an alarm pheromone carried directly on the stinger, which is therefore released upon stinging. The pheromone then recruits nearby bees so that more and more bees participate in the defence. However, a quantitative understanding of how an individual bee adapts its stinging response during the course of an attack is still a challenge: Typically, only the group behaviour is effectively measurable in experiment; Further, linking the observed group behaviour with individual responses requires a probabilistic model enumerating a combinatorial number of possible group contexts during the defence; Finally, extracting the individual characteristics from group observations requires novel methods for parameter inference.We first experimentally observed the behaviour of groups of bees confronted with a fake predator inside an arena and quantified their defensive reaction by counting the number of stingers embedded in the dummy at the end of a trial. We propose a biologically plausible model of this phenomenon, which transparently links the choice of each individual bee to sting or not, to its group context at the time of the decision. Then, we propose an efficient method for inferring the parameters of the model from the experimental data. Finally, we use this methodology to investigate the effect of group size on stinging initiation and alarm pheromone recruitment.Our findings shed light on how the social context influences stinging behaviour, by quantifying how the alarm pheromone concentration level affects the decision of each bee to sting or not in a given group size. We show that recruitment is curbed as group size grows, thus suggesting that the presence of nestmates is integrated as a negative cue by individual bees. Moreover, the unique integration of exact and statistical methods provides a quantitative characterisation of uncertainty associated to each of the inferred parameters.Author summary: In this paper, our interdisciplinary team has significantly improved the understanding of how honeybees coordinate their actions during defence. Our first step was to measure the output behaviour of groups of bees under controlled experimental conditions. We then developed a model and methodology that allow us to quantify how the responsiveness to the alarm pheromone evolves during a defensive event, for a given group size. We show that recruitment becomes less effective as group size increases, thus revealing the existence of a negative social effect that acts on top of alarm pheromone communication. Our contribution is thus two-fold: on the computational side, we provide new tools to extract individual characteristics from population data, which is a challenging issue in the study of collective behaviour. On the biological side, we provide evidence that bees weight in their social context when making the decision to sting. We hypothesize that this may be an important mechanism to prevent recruitment from spinning out of control, ultimately preserving the colony from workforce depletion.

Suggested Citation

  • Tatjana Petrov & Matej Hajnal & Julia Klein & David Šafránek & Morgane Nouvian, 2022. "Extracting individual characteristics from population data reveals a negative social effect during honeybee defence," PLOS Computational Biology, Public Library of Science, vol. 18(9), pages 1-20, September.
  • Handle: RePEc:plo:pcbi00:1010305
    DOI: 10.1371/journal.pcbi.1010305
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010305
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010305&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chib, Siddhartha, 2001. "Markov chain Monte Carlo methods: computation and inference," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 57, pages 3569-3649, Elsevier.
    2. Christoph Johannes Kleineidam & Eva Linda Heeb & Stefanie Neupert, 2017. "Social interactions promote adaptive resource defense in ants," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    2. Coşkun Akdeniz, 2021. "Construction of the Monetary Conditions Index with TVP-VAR Model: Empirical Evidence for Turkish Economy," Springer Books, in: Burcu Adıgüzel Mercangöz (ed.), Handbook of Research on Emerging Theories, Models, and Applications of Financial Econometrics, edition 1, pages 215-228, Springer.
    3. John M. Maheu & Stephen Gordon, 2008. "Learning, forecasting and structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
    4. Nima Nonejad, 2013. "Time-Consistency Problem and the Behavior of US Inflation from 1970 to 2008," CREATES Research Papers 2013-25, Department of Economics and Business Economics, Aarhus University.
    5. Jouchi Nakajima & Yasuhiro Omori, 2007. "Leverage, Heavy-Tails and Correlated Jumps in Stochastic Volatility Models (Revised in January 2008; Published in "Computational Statistics and Data Analysis", 53-6, 2335-2353. April 2009. )," CARF F-Series CARF-F-107, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    6. Sylvia Frühwirth‐Schnatter & Sylvia Kaufmann, 2006. "How do changes in monetary policy affect bank lending? An analysis of Austrian bank data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 275-305, April.
    7. Ricardo Reis & Vasco Curdia, 2009. "Correlated Disturbances and U.S. Business Cycles," 2009 Meeting Papers 129, Society for Economic Dynamics.
    8. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    9. Nakajima, Jouchi & Omori, Yasuhiro, 2012. "Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3690-3704.
    10. Gabriele Fiorentini & Enrique Sentana & Neil Shephard, 2004. "Likelihood-Based Estimation of Latent Generalized ARCH Structures," Econometrica, Econometric Society, vol. 72(5), pages 1481-1517, September.
    11. Azam, Kazim & Pitt, Michael, 2014. "Bayesian Inference for a Semi-Parametric Copula-based Markov Chain," The Warwick Economics Research Paper Series (TWERPS) 1051, University of Warwick, Department of Economics.
    12. Fabrice Murtin, 2007. "The Structural Change and the Endogeneity Bias of the College Premium in the United States 1968-2001"," Working Papers 2007-14, Center for Research in Economics and Statistics.
    13. Chauvet, Marcelle & Potter, Simon, 2010. "Business cycle monitoring with structural changes," International Journal of Forecasting, Elsevier, vol. 26(4), pages 777-793, October.
    14. Watanabe, Toshiaki & Nakajima, Jouchi, 2024. "High-frequency realized stochastic volatility model," Journal of Empirical Finance, Elsevier, vol. 79(C).
    15. Efrem Castelnuovo & Kerem Tuzcuoglu & Luis Uzeda, 2024. "Sectoral uncertainty," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Granular data: new horizons and challenges, volume 61, Bank for International Settlements.
    16. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
    17. Michael D. Bauer, 2018. "Restrictions on Risk Prices in Dynamic Term Structure Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(2), pages 196-211, April.
    18. Danilo Leiva-Leon & Luis Uzeda, 2023. "Endogenous Time Variation in Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 105(1), pages 125-142, January.
    19. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    20. Xianhua Dai & Wolfgang Karl Härdle & Keming Yu, 2016. "Do maternal health problems influence child's worrying status? Evidence from the British Cohort Study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 2941-2955, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.