IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010191.html
   My bibliography  Save this article

Efficient Bayesian inference for mechanistic modelling with high-throughput data

Author

Listed:
  • Simon Martina Perez
  • Heba Sailem
  • Ruth E Baker

Abstract

Bayesian methods are routinely used to combine experimental data with detailed mathematical models to obtain insights into physical phenomena. However, the computational cost of Bayesian computation with detailed models has been a notorious problem. Moreover, while high-throughput data presents opportunities to calibrate sophisticated models, comparing large amounts of data with model simulations quickly becomes computationally prohibitive. Inspired by the method of Stochastic Gradient Descent, we propose a minibatch approach to approximate Bayesian computation. Through a case study of a high-throughput imaging scratch assay experiment, we show that reliable inference can be performed at a fraction of the computational cost of a traditional Bayesian inference scheme. By applying a detailed mathematical model of single cell motility, proliferation and death to a data set of 118 gene knockdowns, we characterise functional subgroups of gene knockdowns, each displaying its own typical combination of local cell density-dependent and -independent motility and proliferation patterns. By comparing these patterns to experimental measurements of cell counts and wound closure, we find that density-dependent interactions play a crucial role in the process of wound healing.Author summary: During wound healing, cells work together to close a wound to restore tissue integrity. Thousands of different genes play a role in wound healing, and scratch assay experiments are routinely used to investigate the role of these genes by analysing how a wound closes when each of these is not expressed, i.e. knocked down. So far, the impact of knocking down genes on wound healing has been determined by comparing the size of the wound before and after a given time period, but these measurements do not elucidate the fine-scale mechanisms that determine how cells behave in the presence of their neighbours. By combining a detailed mathematical model with experimental imaging of wound healing, we identify how cells respond to and work together with their neighbours during wound healing. Applying this method to a large number of gene knockdowns, we identify three well-defined functional subgroups of knockdowns, each displaying its own typical behaviours of movement and proliferation to close the wound. These observations explain the role of each of the knockdowns on wound healing and further our understanding of cell-cell interactions in wound healing.

Suggested Citation

  • Simon Martina Perez & Heba Sailem & Ruth E Baker, 2022. "Efficient Bayesian inference for mechanistic modelling with high-throughput data," PLOS Computational Biology, Public Library of Science, vol. 18(6), pages 1-25, June.
  • Handle: RePEc:plo:pcbi00:1010191
    DOI: 10.1371/journal.pcbi.1010191
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010191
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010191&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Martin & Ajay Jasra & Emma McCoy, 2013. "Inference for a class of partially observed point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 413-437, June.
    2. Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
    3. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    4. Naoki Awaya & Yasuhiro Omori, 2021. "Particle Rolling MCMC with Double-Block Sampling ," CIRJE F-Series CIRJE-F-1175, CIRJE, Faculty of Economics, University of Tokyo.
    5. Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2018. "Monte Carlo Confidence Sets for Identified Sets," Econometrica, Econometric Society, vol. 86(6), pages 1965-2018, November.
    6. Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
    7. Nicolas Chopin & Mathieu Gerber, 2017. "Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension Reduction, Application to Partly Observed Diffusion Processes," Working Papers 2017-35, Center for Research in Economics and Statistics.
    8. Cabral, Celso Rômulo Barbosa & Bolfarine, Heleno & Pereira, José Raimundo Gomes, 2008. "Bayesian density estimation using skew student-t-normal mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5075-5090, August.
    9. Fulop, Andras & Heng, Jeremy & Li, Junye & Liu, Hening, 2022. "Bayesian estimation of long-run risk models using sequential Monte Carlo," Journal of Econometrics, Elsevier, vol. 228(1), pages 62-84.
    10. Edward Herbst & Frank Schorfheide, 2014. "Sequential Monte Carlo Sampling For Dsge Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1073-1098, November.
    11. Owen Jamie & Wilkinson Darren J. & Gillespie Colin S., 2015. "Likelihood free inference for Markov processes: a comparison," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(2), pages 189-209, April.
    12. Maxime Lenormand & Franck Jabot & Guillaume Deffuant, 2013. "Adaptive approximate Bayesian computation for complex models," Computational Statistics, Springer, vol. 28(6), pages 2777-2796, December.
    13. Markku Lanne & Jani Luoto, 2018. "Data†Driven Identification Constraints for DSGE Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(2), pages 236-258, April.
    14. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    15. Lau, F. Din-Houn & Gandy, Axel, 2014. "RMCMC: A system for updating Bayesian models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 99-110.
    16. Chu, Xiaolei & Wang, Ziqi, 2025. "Maximum entropy-based modeling of community-level hazard responses for civil infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    17. Geweke, John & Durham, Garland, 2019. "Sequentially adaptive Bayesian learning algorithms for inference and optimization," Journal of Econometrics, Elsevier, vol. 210(1), pages 4-25.
    18. Pierre Del Moral & Ajay Jasra & Yan Zhou, 2017. "Biased Online Parameter Inference for State-Space Models," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 727-749, September.
    19. Bognanni, Mark & Zito, John, 2020. "Sequential Bayesian inference for vector autoregressions with stochastic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    20. Jang, Tae-Seok & Sacht, Stephen, 2025. "Moment matching for Bayesian inference in the baseline New-Keynesian model," HWWI Working Paper Series 4/2025, Hamburg Institute of International Economics (HWWI).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.