IDEAS home Printed from https://ideas.repec.org/a/pal/risman/v25y2023i1d10.1057_s41283-022-00108-8.html
   My bibliography  Save this article

Information security risk management terminology and key concepts

Author

Listed:
  • Michael Schmidt

    (Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities)

Abstract

Language is the foundation for any communication and the vocabulary used has a decisive influence on the ability of the communication partners to clearly understand each other. In Information Security Risk Management (ISRM), the terminology used is often dictated by industry standards and frameworks. However, there is no universally accepted terminology, which makes collaboration difficult for professionals and researchers alike. This publication compares the terminology defined by frequently used frameworks, such as ISO and NIST, in the field of ISRM. It examines the terms and inherent concepts of each terminology, compares the notion of risk and derives a concept diagram based on the most important key concepts. The result facilitates a common understanding of ISRM across frameworks and organisational boundaries, thus enables further research, discussion, intra- and inter-firm communication.

Suggested Citation

  • Michael Schmidt, 2023. "Information security risk management terminology and key concepts," Risk Management, Palgrave Macmillan, vol. 25(1), pages 1-23, March.
  • Handle: RePEc:pal:risman:v:25:y:2023:i:1:d:10.1057_s41283-022-00108-8
    DOI: 10.1057/s41283-022-00108-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41283-022-00108-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41283-022-00108-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aven, Terje, 2011. "On the new ISO guide on risk management terminology," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 719-726.
    2. Aven, Terje, 2016. "Risk assessment and risk management: Review of recent advances on their foundation," European Journal of Operational Research, Elsevier, vol. 253(1), pages 1-13.
    3. Mike Brownsword & Rossi Setchi, 2011. "A Formalised Approach to the Management of Risk: Process Formalisation," International Journal of Knowledge and Systems Science (IJKSS), IGI Global, vol. 2(3), pages 63-80, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sujan, Mark A. & Habli, Ibrahim & Kelly, Tim P. & Gühnemann, Astrid & Pozzi, Simone & Johnson, Christopher W., 2017. "How can health care organisations make and justify decisions about risk reduction? Lessons from a cross-industry review and a health care stakeholder consensus development process," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 1-11.
    2. Aven, Terje & Renn, Ortwin, 2018. "Improving government policy on risk: Eight key principles," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 230-241.
    3. repec:arp:tjssrr:2019:p:69-75 is not listed on IDEAS
    4. Teng, Kuei-Yung & Thekdi, Shital A. & Lambert, James H., 2012. "Identification and evaluation of priorities in the business process of a risk or safety organization," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 74-86.
    5. Mussard, Stéphane & Pi Alperin, María Noel, 2021. "Accounting for risk factors on health outcomes: The case of Luxembourg," European Journal of Operational Research, Elsevier, vol. 291(3), pages 1180-1197.
    6. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    7. Tasneem Bani-Mustafa & Nicola Pedroni & Enrico Zio & Dominique Vasseur & Francois Beaudouin, 2020. "A hierarchical tree-based decision-making approach for assessing the relative trustworthiness of risk assessment models," Journal of Risk and Reliability, , vol. 234(6), pages 748-763, December.
    8. Aigner, Philipp & Schlütter, Sebastian, 2023. "Enhancing gradient capital allocation with orthogonal convexity scenarios," ICIR Working Paper Series 47/23, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR).
    9. Mangirdas Morkunas & Gintaras Cernius & Gintare Giriuniene, 2019. "Assessing Business Risks of Natural Gas Trading Companies: Evidence from GET Baltic," Energies, MDPI, vol. 12(14), pages 1-14, July.
    10. Scholz, Roland W. & Czichos, Reiner & Parycek, Peter & Lampoltshammer, Thomas J., 2020. "Organizational vulnerability of digital threats: A first validation of an assessment method," European Journal of Operational Research, Elsevier, vol. 282(2), pages 627-643.
    11. Dr Jason Mwanza & Nothando Tshuma, 2023. "Mitigating Business Risk in Manufacturing SMEs: A nexus between informal and formal business risk management: A case of Bulawayo, Zimbabwe," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(1), pages 1107-1138, January.
    12. Badir Yousif Rafee Alharmoodi & Muhammad Modi Lakulu, 2022. "The Formulation and Validation of a Conceptual Framework for the Transition from E-government to M-government," European Journal of Interdisciplinary Studies Articles, Revistia Research and Publishing, vol. 8, January -.
    13. Don Pagach & Monika Wieczorek-Kosmala, 2020. "The Challenges and Opportunities for ERM Post-COVID-19: Agendas for Future Research," JRFM, MDPI, vol. 13(12), pages 1-10, December.
    14. KeumJi Kim & SeongHwan Yoon, 2018. "Assessment of Building Damage Risk by Natural Disasters in South Korea Using Decision Tree Analysis," Sustainability, MDPI, vol. 10(4), pages 1-22, April.
    15. Aven, Terje, 2020. "Three influential risk foundation papers from the 80s and 90s: Are they still state-of-the-art?," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    16. Tatiana Yu. Kudryavtseva & Angi E. Skhvediani & Maiia S. Leukhina & Alexandra O. Schneider, 2023. "A Fuzzy Model for Personnel Risk Analysis: Case of Russian-Finnish Export-Import Operations of Small and Medium Enterprises," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 22(3), pages 683-709.
    17. Marcin Nowak & Rafał Mierzwiak & Marcin Butlewski, 2020. "Occupational risk assessment with grey system theory," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(2), pages 717-732, June.
    18. Kjell Hausken, 2019. "Principal–Agent Theory, Game Theory, and the Precautionary Principle," Decision Analysis, INFORMS, vol. 16(2), pages 105-127, June.
    19. Kayode Ajewole & Elliott Dennis & Ted C. Schroeder & Jason Bergtold, 2021. "Relative valuation of food and non‐food risks with a comparison to actuarial values: A best–worst approach," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 927-943, November.
    20. Simon Ashby & Trevor Buck & Stephanie Nöth-Zahn & Thomas Peisl, 2018. "Emerging IT Risks: Insights from German Banking," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 43(2), pages 180-207, April.
    21. Tosoni, E. & Salo, A. & Govaerts, J. & Zio, E., 2019. "Comprehensiveness of scenarios in the safety assessment of nuclear waste repositories," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 561-573.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:risman:v:25:y:2023:i:1:d:10.1057_s41283-022-00108-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.