IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v10y2023i1d10.1057_s41599-023-02283-9.html
   My bibliography  Save this article

Dynamic simulation research on urban green transformation under the target of carbon emission reduction: the example of Shanghai

Author

Listed:
  • Hua Shang

    (Dalian University of Technology)

  • Hailei Yin

    (Dalian University of Technology)

Abstract

This paper aimed to predict the trend of carbon emissions during the green transformation process in Shanghai, with a focus on the city’s urban system structure. Green development has become an inevitable trend in urban progress, as traditional urban development has led to severe environmental problems caused by the emissions of a large amount of carbon dioxide. This study was motivated by the need for cities to actively pursue green transformation and achieve carbon peaking targets. Through a literature analysis, it was found that urban green transformation is influenced by various factors such as economy, energy, population, technology, and policy. Furthermore, carbon dioxide emissions primarily arise from fossil fuels and are regulated by carbon emission trading (CET) policies. With this knowledge, the urban system was divided, and the flow of carbon was analyzed. Using the general methodology of the IPCC, the carbon production resulting from energy consumption in Shanghai from 2014 to 2019 is calculated to construct an urban system dynamic (SD) model, which is used to predict the carbon emissions expected during the green transformation from 2020 to 2025. The key findings of the study are as follows: (1) The dynamic model of the urban green transformation system proved to be effective in predicting carbon emissions. (2) Based on the current status of green transformation in Shanghai, the city is capable of achieving its expected carbon emission peaking target by 2025. (3) The progress and timing of green transformation and carbon peaking in Shanghai vary across different scenarios, highlighting the importance of collective adjustments to identify the most appropriate path for urban green transformation. These findings provide valuable insights for cities seeking to adopt green development measures, facilitating the acceleration of their green transformation efforts and early attainment of carbon peaking targets.

Suggested Citation

  • Hua Shang & Hailei Yin, 2023. "Dynamic simulation research on urban green transformation under the target of carbon emission reduction: the example of Shanghai," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-16, December.
  • Handle: RePEc:pal:palcom:v:10:y:2023:i:1:d:10.1057_s41599-023-02283-9
    DOI: 10.1057/s41599-023-02283-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-023-02283-9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-023-02283-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Du, Kerui & Cheng, Yuanyuan & Yao, Xin, 2021. "Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities," Energy Economics, Elsevier, vol. 98(C).
    2. Zhaoxian Su & Yang Yang & Yun Wang & Pan Zhang & Xin Luo, 2023. "Study on Spatiotemporal Evolution Features and Affecting Factors of Collaborative Governance of Pollution Reduction and Carbon Abatement in Urban Agglomerations of the Yellow River Basin," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    3. Jian Song & Jing Wang & Zhe Chen, 2022. "How Low-Carbon Pilots Affect Chinese Urban Energy Efficiency: An Explanation from Technological Progress," IJERPH, MDPI, vol. 19(23), pages 1-30, November.
    4. Fang, Zhen, 2023. "Assessing the impact of renewable energy investment, green technology innovation, and industrialization on sustainable development: A case study of China," Renewable Energy, Elsevier, vol. 205(C), pages 772-782.
    5. Zhen Wang & Xupeng Zhang & Chaozheng Zhang & Qing Yang, 2022. "How Regional Integration Affects Urban Green Development Efficiency: Evidence from Urban Agglomeration in the Middle Reaches of the Yangtze River," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
    6. Xue, Fei & Yao, Enjian, 2022. "Impact analysis of residential relocation on ownership, usage, and carbon-dioxide emissions of private cars," Energy, Elsevier, vol. 252(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianxuan Li & Haochang Yang & Shiquan Zhong & Yue Zhong, 2025. "Exploring the Effect of Integration Development of Digital Intelligence on Green Technology Innovation Quantity and Quality," Sustainability, MDPI, vol. 17(10), pages 1-40, May.
    2. Kun Liu & Xuemin Liu & Zihao Wu, 2024. "Nexus between Corporate Digital Transformation and Green Technological Innovation Performance: The Mediating Role of Optimizing Resource Allocation," Sustainability, MDPI, vol. 16(3), pages 1-21, February.
    3. Yi Feng & Diyun Peng & Yafei Li & Shuai Liu, 2024. "Can regional integration reduce carbon intensity? Evidence from city cluster in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(2), pages 5249-5274, February.
    4. Haiyan Jiang & Jiaxi Lu & Ruidong Zhang & Xi Xiao, 2025. "Investigation of Diverse Urban Carbon Emission Reduction Pathways in China: Based on the Technology–Organization–Environment Framework for Promoting Socio-Environmental Sustainability," Land, MDPI, vol. 14(2), pages 1-32, January.
    5. Xu, Ru-Yu & Wang, Ke-Liang & Miao, Zhuang, 2024. "The impact of digital technology innovation on green total-factor energy efficiency in China: Does economic development matter?," Energy Policy, Elsevier, vol. 194(C).
    6. Hu, Hui & Qi, Shaozhou & Chen, Yuanzhi, 2023. "Using green technology for a better tomorrow: How enterprises and government utilize the carbon trading system and incentive policies," China Economic Review, Elsevier, vol. 78(C).
    7. Chuan Tian & Guohui Feng & Huanyu Li, 2023. "Empirical Study on the Impact of Urbanization and Carbon Emissions under the Dual-Carbon Framework Based on Coupling and Coordination," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    8. Ran, Qiying & Yang, Xiaodong & Yan, Hongchuan & Xu, Yang & Cao, Jianhong, 2023. "Natural resource consumption and industrial green transformation: Does the digital economy matter?," Resources Policy, Elsevier, vol. 81(C).
    9. Bei Liu & Jinmin Wang & Xinle Tong & Zhihua Zhou & Zhaoxuan Qiu, 2024. "Institutional investor shareholding and the quality of corporate innovation: Moderating effects based on internal and external environment," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 45(1), pages 326-338, January.
    10. Xueyang Wang & Xiumei Sun & Haotian Zhang & Chaokai Xue, 2022. "Digital Economy Development and Urban Green Innovation CA-Pability: Based on Panel Data of 274 Prefecture-Level Cities in China," Sustainability, MDPI, vol. 14(5), pages 1-21, March.
    11. Xing Zhao & Yifan Guo & Zhen Liu & Anteng Xiu, 2023. "Boosting green recovery: the impact of green fiscal policy on green total factor productivity," Economic Change and Restructuring, Springer, vol. 56(4), pages 2601-2619, August.
    12. Muhammad, Tufail & Ni, Guohua & Chen, Zhenling & Mallek, Sabrine & Dudek, Marek & Mentel, Grzegorz, 2024. "Addressing resource curse: How mineral resources influence industrial structure dynamics of the BRI 57 oil-exporting countries," Resources Policy, Elsevier, vol. 99(C).
    13. Lei Zhang & Lili Xu & Mingzi Gao & Mingdong Zhou, 2024. "Can Agricultural Credit Promote the Green Transformation of China’s Agriculture?," Sustainability, MDPI, vol. 16(24), pages 1-14, December.
    14. Yanli Ji & Jie Xue & Kaiyang Zhong, 2022. "Does Environmental Regulation Promote Industrial Green Technology Progress? Empirical Evidence from China with a Heterogeneity Analysis," IJERPH, MDPI, vol. 19(1), pages 1-23, January.
    15. Viglioni, Marco Túlio Dinali & Calegario, Cristina Lelis Leal & Bruhn, Nádia Campos Pereira, 2025. "Effects of economic complexity and metallic mineral resources on renewable energy transition in developing countries," Resources Policy, Elsevier, vol. 102(C).
    16. Łukasz Brzeziński & Adam Kolinski, 2024. "Challenges of the Green Transformation of Transport in Poland," Sustainability, MDPI, vol. 16(8), pages 1-34, April.
    17. Zhu, Junpeng & Lin, Boqiang, 2022. "Resource dependence, market-oriented reform, and industrial transformation: Empirical evidence from Chinese cities," Resources Policy, Elsevier, vol. 78(C).
    18. Liu, Mingxing & Luo, Qiaoling & Huang, Rongjun & Wu, Yangyi & Zhou, Junfang, 2025. "Dynamic impacts of urban expansion on vegetation growth in urban environments: A sustainable land management framework," Land Use Policy, Elsevier, vol. 153(C).
    19. Xiaoqi Li & Dingfei Guo & Chao Feng, 2022. "The Carbon Emissions Trading Policy of China: Does It Really Promote the Enterprises’ Green Technology Innovations?," IJERPH, MDPI, vol. 19(21), pages 1-15, November.
    20. Jiamin Liu & Xiaoyu Ma & Bin Zhao & Qi Cui & Sisi Zhang & Jiaoning Zhang, 2023. "Mandatory Environmental Regulation, Enterprise Labor Demand and Green Innovation Transformation: A Quasi-Experiment from China’s New Environmental Protection Law," Sustainability, MDPI, vol. 15(14), pages 1-31, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:10:y:2023:i:1:d:10.1057_s41599-023-02283-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.