IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v54y2003i5d10.1057_palgrave.jors.2601551.html
   My bibliography  Save this article

Loading aircraft for military operations

Author

Listed:
  • C Guéret

    (École des Mines de Nantes
    IRCCyN—Institut de Recherche en Communications et Cybernétique de Nantes)

  • N Jussien

    (École des Mines de Nantes)

  • O Lhomme

    (IPogSA)

  • C Pavageau

    (École des Mines de Nantes)

  • C Prins

    (Université de Technologie de Troyes)

Abstract

In this paper, we describe an aircraft loading problem submitted by the French military agency (DGA) as part of a more general military airlift planning problem. It can be viewed as a kind of bi-dimensional bin-packing problem, with heterogeneous bins and several additional constraints. We introduce two-phase methods for solving this NP-hard problem. The first phase consists in building good initial solutions, thanks to two fast algorithms: a list-based heuristic and a loading pattern generation method. Both algorithms call a constraint-based subroutine, able to determine quickly if the items already loaded can be reshuffled to accommodate a new object. The second phase improves these preliminary solutions using local search techniques. Results obtained on real data sets are presented.

Suggested Citation

  • C Guéret & N Jussien & O Lhomme & C Pavageau & C Prins, 2003. "Loading aircraft for military operations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(5), pages 458-465, May.
  • Handle: RePEc:pal:jorsoc:v:54:y:2003:i:5:d:10.1057_palgrave.jors.2601551
    DOI: 10.1057/palgrave.jors.2601551
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601551
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601551?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harold K. Rappoport & Laurence S. Levy & Bruce L. Golden & David S. Feshbach, 1991. "Estimating Loads of Aircraft in Planning for the Military Airlift Command," Interfaces, INFORMS, vol. 21(4), pages 63-78, August.
    2. Gehring, H. & Menschner, K. & Meyer, M., 1990. "A computer-based heuristic for packing pooled shipment containers," European Journal of Operational Research, Elsevier, vol. 44(2), pages 277-288, January.
    3. Rajendra S. Solanki & Frank Southworth, 1991. "An Execution Planning Algorithm for Military Airlift," Interfaces, INFORMS, vol. 21(4), pages 121-131, August.
    4. Douglas D. Cochard & Kirk A. Yost, 1985. "Improving Utilization of Air Force Cargo Aircraft," Interfaces, INFORMS, vol. 15(1), pages 53-68, February.
    5. V. Chvatal, 1979. "A Greedy Heuristic for the Set-Covering Problem," Mathematics of Operations Research, INFORMS, vol. 4(3), pages 233-235, August.
    6. Larsen, Ole & Mikkelsen, Gert, 1980. "An interactive system for the loading of cargo aircraft," European Journal of Operational Research, Elsevier, vol. 4(6), pages 367-373, June.
    7. Nicos Christofides & Charles Whitlock, 1977. "An Algorithm for Two-Dimensional Cutting Problems," Operations Research, INFORMS, vol. 25(1), pages 30-44, February.
    8. Harold K. Rappoport & Laurence S. Levy & Bruce L. Golden & Katherine J. Toussaint, 1992. "A Planning Heuristic for Military Airlift," Interfaces, INFORMS, vol. 22(3), pages 73-87, June.
    9. Bischoff, E. E. & Ratcliff, M. S. W., 1995. "Issues in the development of approaches to container loading," Omega, Elsevier, vol. 23(4), pages 377-390, August.
    10. Liu, Dequan & Teng, Hongfei, 1999. "An improved BL-algorithm for genetic algorithm of the orthogonal packing of rectangles," European Journal of Operational Research, Elsevier, vol. 112(2), pages 413-420, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mavrommatis, George, 2008. "Learning objects and objectives towards automatic learning construction," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1449-1458, June.
    2. Brandt, Felix & Nickel, Stefan, 2019. "The air cargo load planning problem - a consolidated problem definition and literature review on related problems," European Journal of Operational Research, Elsevier, vol. 275(2), pages 399-410.
    3. A Ghanmi & R H A D Shaw, 2008. "Modelling and analysis of Canadian Forces strategic lift and pre-positioning options," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(12), pages 1591-1602, December.
    4. Gilbert Laporte, 2010. "Comments on: Routing problems with loading constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 28-30, July.
    5. Lurkin, Virginie & Schyns, Michaël, 2015. "The Airline Container Loading Problem with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 244(3), pages 955-965.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bortfeldt, Andreas & Wäscher, Gerhard, 2013. "Constraints in container loading – A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 229(1), pages 1-20.
    2. Brandt, Felix & Nickel, Stefan, 2019. "The air cargo load planning problem - a consolidated problem definition and literature review on related problems," European Journal of Operational Research, Elsevier, vol. 275(2), pages 399-410.
    3. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.
    4. José Fernando Gonçalves & Mauricio G. C. Resende, 2011. "A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 180-201, August.
    5. Wei, Lijun & Oon, Wee-Chong & Zhu, Wenbin & Lim, Andrew, 2011. "A skyline heuristic for the 2D rectangular packing and strip packing problems," European Journal of Operational Research, Elsevier, vol. 215(2), pages 337-346, December.
    6. Silva, Elsa & Ramos, António G. & Oliveira, José F., 2018. "Load balance recovery for multi-drop distribution problems: A mixed integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 62-75.
    7. Leonardo Junqueira & Reinaldo Morabito & Denise Sato Yamashita, 2012. "MIP-based approaches for the container loading problem with multi-drop constraints," Annals of Operations Research, Springer, vol. 199(1), pages 51-75, October.
    8. Ambrosino, Daniela & Sciomachen, Anna & Tanfani, Elena, 2004. "Stowing a containership: the master bay plan problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(2), pages 81-99, February.
    9. Bortfeldt, Andreas & Gehring, Hermann, 2001. "A hybrid genetic algorithm for the container loading problem," European Journal of Operational Research, Elsevier, vol. 131(1), pages 143-161, May.
    10. Kurpel, Deidson Vitorio & Scarpin, Cassius Tadeu & Pécora Junior, José Eduardo & Schenekemberg, Cleder Marcos & Coelho, Leandro C., 2020. "The exact solutions of several types of container loading problems," European Journal of Operational Research, Elsevier, vol. 284(1), pages 87-107.
    11. Hadjiconstantinou, Eleni & Iori, Manuel, 2007. "A hybrid genetic algorithm for the two-dimensional single large object placement problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1150-1166, December.
    12. Silvano Martello & David Pisinger & Daniele Vigo, 2000. "The Three-Dimensional Bin Packing Problem," Operations Research, INFORMS, vol. 48(2), pages 256-267, April.
    13. Chen, C. S. & Lee, S. M. & Shen, Q. S., 1995. "An analytical model for the container loading problem," European Journal of Operational Research, Elsevier, vol. 80(1), pages 68-76, January.
    14. Gonçalves, José Fernando & Resende, Mauricio G.C., 2013. "A biased random key genetic algorithm for 2D and 3D bin packing problems," International Journal of Production Economics, Elsevier, vol. 145(2), pages 500-510.
    15. Marco Antonio Boschetti & Lorenza Montaletti, 2010. "An Exact Algorithm for the Two-Dimensional Strip-Packing Problem," Operations Research, INFORMS, vol. 58(6), pages 1774-1791, December.
    16. Mahmoudi, Monirehalsadat & Zhou, Xuesong, 2016. "Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 19-42.
    17. Henriette Koch & Andreas Bortfeldt & Gerhard Wäscher, 2018. "A hybrid algorithm for the vehicle routing problem with backhauls, time windows and three-dimensional loading constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 1029-1075, October.
    18. Bischoff, E.E., 2006. "Three-dimensional packing of items with limited load bearing strength," European Journal of Operational Research, Elsevier, vol. 168(3), pages 952-966, February.
    19. Lim, A. & Rodrigues, B. & Wang, Y., 2003. "A multi-faced buildup algorithm for three-dimensional packing problems," Omega, Elsevier, vol. 31(6), pages 471-481, December.
    20. Sam D. Allen & Edmund K. Burke, 2012. "Data Structures for Higher-Dimensional Rectilinear Packing," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 457-470, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:54:y:2003:i:5:d:10.1057_palgrave.jors.2601551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.