IDEAS home Printed from https://ideas.repec.org/a/pal/jorapm/v24y2025i2d10.1057_s41272-024-00493-7.html
   My bibliography  Save this article

Transfer learning to scale deep Q networks in the context of airline pricing

Author

Listed:
  • Sharath Nataraj
  • Jeswin Varghese
  • R Adarsh
  • Aparna Muralidhar
  • Ebin Joseph
  • Ranjith Menon
  • Dieter Westermann

Abstract

Dynamic Airline ticket pricing is a complex process, wherein airlines determine the best price for varied business contexts that encapsulate several factors. While most airlines use traditional revenue management (RM) systems to do this, studies have shown that deep reinforcement learning (DRL) models could maximize revenue by expanding price discovery. However, scaling these models to all routes of an airline would be cost-intensive. To help address this issue, we propose the application of transfer learning to share the knowledge gained from DRL, between similar routes, potentially helping airlines inch closer to putting a DRL-based pricing-model in production.

Suggested Citation

  • Sharath Nataraj & Jeswin Varghese & R Adarsh & Aparna Muralidhar & Ebin Joseph & Ranjith Menon & Dieter Westermann, 2025. "Transfer learning to scale deep Q networks in the context of airline pricing," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 24(2), pages 190-200, April.
  • Handle: RePEc:pal:jorapm:v:24:y:2025:i:2:d:10.1057_s41272-024-00493-7
    DOI: 10.1057/s41272-024-00493-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41272-024-00493-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41272-024-00493-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chatwin, Richard E., 2000. "Optimal dynamic pricing of perishable products with stochastic demand and a finite set of prices," European Journal of Operational Research, Elsevier, vol. 125(1), pages 149-174, August.
    2. Nicolas Bondoux & Anh Quan Nguyen & Thomas Fiig & Rodrigo Acuna-Agost, 2020. "Reinforcement learning applied to airline revenue management," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(5), pages 332-348, October.
    3. Guillermo Gallego & Garrett van Ryzin, 1994. "Optimal Dynamic Pricing of Inventories with Stochastic Demand over Finite Horizons," Management Science, INFORMS, vol. 40(8), pages 999-1020, August.
    4. Peter P Belobaba, 2016. "Optimization models in RM systems: Optimality versus revenue gains," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 15(3), pages 229-235, July.
    5. Paul Rose, 2016. "A lifetime in airline revenue management," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 15(3), pages 197-202, July.
    6. Tak C. Lee & Marvin Hersh, 1993. "A Model for Dynamic Airline Seat Inventory Control with Multiple Seat Bookings," Transportation Science, INFORMS, vol. 27(3), pages 252-265, August.
    7. Youyi Feng & Baichun Xiao, 2000. "A Continuous-Time Yield Management Model with Multiple Prices and Reversible Price Changes," Management Science, INFORMS, vol. 46(5), pages 644-657, May.
    8. Peter P. Belobaba, 1989. "OR Practice—Application of a Probabilistic Decision Model to Airline Seat Inventory Control," Operations Research, INFORMS, vol. 37(2), pages 183-197, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel Bitran & René Caldentey, 2003. "An Overview of Pricing Models for Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 5(3), pages 203-229, August.
    2. Wang, Xiubin & Regan, Amelia, 2006. "Dynamic yield management when aircraft assignments are subject to swap," Transportation Research Part B: Methodological, Elsevier, vol. 40(7), pages 563-576, August.
    3. Pak, K. & Piersma, N., 2002. "airline revenue management," ERIM Report Series Research in Management ERS-2002-12-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Pak, K. & Piersma, N., 2002. "Airline revenue management: an overview of OR techniques 1982-2001," Econometric Institute Research Papers EI 2002-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Chew, Ek Peng & Lee, Chulung & Liu, Rujing, 2009. "Joint inventory allocation and pricing decisions for perishable products," International Journal of Production Economics, Elsevier, vol. 120(1), pages 139-150, July.
    6. Shelby Brumelle & Darius Walczak, 2003. "Dynamic Airline Revenue Management with Multiple Semi-Markov Demand," Operations Research, INFORMS, vol. 51(1), pages 137-148, February.
    7. Syed Asif Raza & Rafi Ashrafi & Ali Akgunduz, 2020. "A bibliometric analysis of revenue management in airline industry," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(6), pages 436-465, December.
    8. Cao, Ping & Li, Jianbin & Yan, Hong, 2012. "Optimal dynamic pricing of inventories with stochastic demand and discounted criterion," European Journal of Operational Research, Elsevier, vol. 217(3), pages 580-588.
    9. Chen, Jing & Dong, Ming & Rong, Ying & Yang, Liang, 2018. "Dynamic pricing for deteriorating products with menu cost," Omega, Elsevier, vol. 75(C), pages 13-26.
    10. Feng, Youyi & Xiao, Baichun, 2006. "Integration of pricing and capacity allocation for perishable products," European Journal of Operational Research, Elsevier, vol. 168(1), pages 17-34, January.
    11. Chatwin, Richard E., 2000. "Optimal dynamic pricing of perishable products with stochastic demand and a finite set of prices," European Journal of Operational Research, Elsevier, vol. 125(1), pages 149-174, August.
    12. Aniruddha Dutta, 2019. "Capacity Allocation of Game Tickets Using Dynamic Pricing," Data, MDPI, vol. 4(4), pages 1-12, October.
    13. Feng, Youyi & Xiao, Baichun, 2006. "A continuous-time seat control model for single-leg flights with no-shows and optimal overbooking upper bound," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1298-1316, October.
    14. Banerjee, Pradeep K. & Turner, T. Rolf, 2012. "A flexible model for the pricing of perishable assets," Omega, Elsevier, vol. 40(5), pages 533-540.
    15. Jeffrey I. McGill & Garrett J. van Ryzin, 1999. "Revenue Management: Research Overview and Prospects," Transportation Science, INFORMS, vol. 33(2), pages 233-256, May.
    16. Sibdari, Soheil & Pyke, David F., 2010. "A competitive dynamic pricing model when demand is interdependent over time," European Journal of Operational Research, Elsevier, vol. 207(1), pages 330-338, November.
    17. Kalyan Talluri & Garrett van Ryzin, 2000. "Revenue management under general discrete choice model of consumer behavior," Economics Working Papers 533, Department of Economics and Business, Universitat Pompeu Fabra, revised Oct 2001.
    18. Yigao Liang, 1999. "Solution to the Continuous Time Dynamic Yield Management Model," Transportation Science, INFORMS, vol. 33(1), pages 117-123, February.
    19. Alderighi, Marco & Gaggero, Alberto A. & Piga, Claudio A., 2022. "Hidden prices with fixed inventory: Evidence from the airline industry," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 42-61.
    20. Lin, Kyle Y., 2006. "Dynamic pricing with real-time demand learning," European Journal of Operational Research, Elsevier, vol. 174(1), pages 522-538, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorapm:v:24:y:2025:i:2:d:10.1057_s41272-024-00493-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.