IDEAS home Printed from
   My bibliography  Save this article

Learning in Agent-based Models


  • Alan Kirman

    (GREQAM, Université Paul Cézanne, Ecole des Hautes Etudes en Sciences Sociales, Institut Universitaire de France, 2 Rue de la Charite, Marseille 13002, France)


This paper examines the process by which agents learn to act in economic environments. Learning is particularly complicated in such situations since the environment is, at least in part, made up of other agents who are also learning. At best, one can hope to obtain analytical results for a rudimentary model. To make progress in understanding the dynamics of learning and coordination in general cases one can simulate agent based models to see whether the results obtained in skeletal models translate into the more general case. Using this approach can help us to understand which are the crucial assumptions in determining whether learning converges and, if so, to which sort of state. Three examples are presented, one in which agents learn to form trading relationships, one in which agents misspecify the model of their environment and a last one in which agents may learn to take actions which are systematically favourable, (or unfavourable) for them. In each case simulating models in which agents operate with simple rules in a complex environment, allows us to examine the role of the type of learning process used by the agents the extent to which they coordinate on a final outcome and the nature of that outcome.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Alan Kirman, 2011. "Learning in Agent-based Models," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 37(1), pages 20-27.
  • Handle: RePEc:pal:easeco:v:37:y:2011:i:1:p:20-27

    Download full text from publisher

    File URL:
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL:
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Paul L. Joskow, 2006. "Markets for Power in the United States: An Interim Assessment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 1-36.
    2. Tesfatsion, Leigh, 2006. "Agent-Based Computational Economics: A Constructive Approach to Economic Theory," Handbook of Computational Economics,in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 16, pages 831-880 Elsevier.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Marko Petrovic & Bulent Ozel & Andrea Teglio & Marco Raberto & Silvano Cincotti, 2017. "Eurace Open: An agent-based multi-country model," Working Papers 2017/09, Economics Department, Universitat Jaume I, Castellón (Spain).
    2. Antonelli, Cristiano, 2017. "From the Economics of Information to the Economics of Knowledge. Length: pages 39," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201714, University of Turin.
    3. Liu, Chunping & Minford, Patrick, 2014. "Comparing behavioural and rational expectations for the US post-war economy," Economic Modelling, Elsevier, vol. 43(C), pages 407-415.
    4. Salle, Isabelle & Yıldızoğlu, Murat & Sénégas, Marc-Alexandre, 2013. "Inflation targeting in a learning economy: An ABM perspective," Economic Modelling, Elsevier, vol. 34(C), pages 114-128.
    5. Antonelli, Cristiano, 2017. "From the Economics of Information to the Economics of Knowledge," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201706, University of Turin.
    6. Matteo G. Richiardi, 2015. "The future of agent-based modelling," LABORatorio R. Revelli Working Papers Series 141, LABORatorio R. Revelli, Centre for Employment Studies.
    7. Simone Landini & Mauro Gallegati & Joseph Stiglitz, 2015. "Economies with heterogeneous interacting learning agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(1), pages 91-118, April.
    8. Voronovitsky, Mark, 2015. "The Agent-Based Model of the Closed Market of the One Commodity with Finite Automata as Participants of the Market," MPRA Paper 70439, University Library of Munich, Germany.
    9. Matteo G. Richiardi, 2017. "The Future of Agent-Based Modeling," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(2), pages 271-287, March.
    10. Вороновицкий М.М., 2014. "Агент - Ориентированная Модель Замкнутого Однотоварного Рынка," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 50(2), pages 73-87, апрель.
    11. Вороновицкий М.М., 2015. "Агент-Ориентированная Модель Замкнутого Однотоварного Рынка При Рациональном Предпочтении Участников," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 51(3), pages 64-80, июль.
    12. Barroso, Ricardo Vieira & Lima, Joaquim Ignacio Alves Vasconcellos & Lucchetti, Alexandre Henrique & Cajueiro, Daniel Oliveira, 2016. "Interbank network and regulation policies: an analysis through agent-based simulations with adaptive learning," MPRA Paper 73308, University Library of Munich, Germany.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:easeco:v:37:y:2011:i:1:p:20-27. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.