IDEAS home Printed from
   My bibliography  Save this article

Improving Tests of Abnormal Returns by Bootstrapping the Multivariate Regression Model with Event Parameters


  • Scott E. Hein


Parametric dummy variable-based tests for event studies using multivariate regression are not robust to nonnormality of the residual, even for arbitrarily large sample sizes. Bootstrap alternatives are described, investigated, and compared for cases where there are nonnormalities, and cross-sectional and time-series dependencies. Independent bootstrapping of residual vectors from the multivariate regression model controls type I error rates in the presence of cross-sectional correlation, and surprisingly, even in the presence of time-series dependence structures. The proposed methods not only improve upon parametric methods, but also allow development of new and powerful event study tests for which there is no parametric counterpart. Copyright 2004, Oxford University Press.

Suggested Citation

  • Scott E. Hein, 2004. "Improving Tests of Abnormal Returns by Bootstrapping the Multivariate Regression Model with Event Parameters," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(3), pages 451-471.
  • Handle: RePEc:oup:jfinec:v:2:y:2004:i:3:p:451-471

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. He, Changli & Ter svirta, Timo & Malmsten, Hans, 2002. "Moment Structure Of A Family Of First-Order Exponential Garch Models," Econometric Theory, Cambridge University Press, vol. 18(04), pages 868-885, August.
    2. Duan, Jin-Chuan, 1997. "Augmented GARCH (p,q) process and its diffusion limit," Journal of Econometrics, Elsevier, vol. 79(1), pages 97-127, July.
    3. Hall, Peter & Yao, Qiwei, 2003. "Inference in ARCH and GARCH models with heavy-tailed errors," LSE Research Online Documents on Economics 5875, London School of Economics and Political Science, LSE Library.
    4. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    5. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    6. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    7. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    8. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
    9. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    10. repec:bla:restud:v:65:y:1998:i:3:p:361-93 is not listed on IDEAS
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Roman Liesenfeld & Robert C. Jung, 2000. "Stochastic volatility models: conditional normality versus heavy-tailed distributions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 137-160.
    13. Harvey, Andrew & Streibel, Mariane, 1998. "Testing for a slowly changing level with special reference to stochastic volatility," Journal of Econometrics, Elsevier, vol. 87(1), pages 167-189, August.
    14. Jondeau, Eric & Rockinger, Michael, 2003. "Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1699-1737, August.
    15. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-434, October.
    16. He, Changli & Terasvirta, Timo, 1999. "Properties of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 92(1), pages 173-192, September.
    17. Christian M. Hafner & Helmut Herwartz, 2000. "Testing for linear autoregressive dynamics under heteroskedasticity," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 177-197.
    18. Renate Meyer & Jun Yu, 2000. "BUGS for a Bayesian analysis of stochastic volatility models," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 198-215.
    19. Geoffrey F. Loudon & Wing H. Watt & Pradeep K. Yadav, 2000. "An empirical analysis of alternative parametric ARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 117-136.
    20. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    21. Peter Hall & Qiwei Yao, 2003. "Inference in Arch and Garch Models with Heavy--Tailed Errors," Econometrica, Econometric Society, vol. 71(1), pages 285-317, January.
    22. Bai, Xuezheng & Russell, Jeffrey R. & Tiao, George C., 2003. "Kurtosis of GARCH and stochastic volatility models with non-normal innovations," Journal of Econometrics, Elsevier, vol. 114(2), pages 349-360, June.
    23. Enrique Sentana, 1995. "Quadratic ARCH Models," Review of Economic Studies, Oxford University Press, vol. 62(4), pages 639-661.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Beltratti, Andrea & Bortolotti, Bernardo & Caccavaio, Marianna, 2016. "Stock market efficiency in China: Evidence from the split-share reform," The Quarterly Review of Economics and Finance, Elsevier, vol. 60(C), pages 125-137.
    2. Huang, Roger D. & Li, Hang, 2009. "Does the market dole out collective punishment? An empirical analysis of industry, geography, and Arthur Andersen's reputation," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1255-1265, July.
    3. Deitz, George D. & Evans, Robert D. & Hansen, John D., 2013. "Sponsorship and shareholder value: A re-examination and extension," Journal of Business Research, Elsevier, vol. 66(9), pages 1427-1435.
    4. Zhang, Jing Hua & Tam, Kwo Ping & Zhou, Nan, 2016. "Do smoking bans always hurt the gaming industry? Differentiated impacts on the market value of casino firms in Macao," Economics - The Open-Access, Open-Assessment E-Journal, Kiel Institute for the World Economy (IfW), vol. 10, pages 1-32.
    5. Michael Cichello & Douglas Lamdin, 2006. "Event Studies and the Analysis of Antitrust," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 13(2), pages 229-245.
    6. Christopher S. Armstrong & Mary E. Barth & Alan D. Jagolinzer & Edward J. Riedl, 2008. "Market Reaction to the Adoption of IFRS in Europe," Harvard Business School Working Papers 09-032, Harvard Business School.
    7. Gungor, Sermin & Luger, Richard, 2015. "Bootstrap Tests Of Mean-Variance Efficiency With Multiple Portfolio Groupings," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 35-65, Mars-Juin.
    8. Jaikumar, Saravana & Pingali, Viswanath & Virmani, Vineet, 2015. "Are Investors Ethics Agnostic?," IIMA Working Papers WP2015-03-12, Indian Institute of Management Ahmedabad, Research and Publication Department.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:2:y:2004:i:3:p:451-471. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.