IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v6y2023i1d10.1038_s41893-022-00997-3.html
   My bibliography  Save this article

Sustained productivity and agronomic potential of perennial rice

Author

Listed:
  • Shilai Zhang

    (Yunnan University)

  • Guangfu Huang

    (Yunnan University)

  • Yujiao Zhang

    (Yunnan University)

  • Xiutao Lv

    (National Agricultural Technology Extension and Service Center)

  • Kejiang Wan

    (National Agricultural Technology Extension and Service Center)

  • Jian Liang

    (National Agricultural Technology Extension and Service Center)

  • Yupeng Feng

    (National Agricultural Technology Extension and Service Center)

  • Jinrong Dao

    (Yunnan Agricultural Technology Extension Station)

  • Shukang Wu

    (Yunnan Agricultural Technology Extension Station)

  • Lin Zhang

    (Yunnan Agricultural Technology Extension Station)

  • Xu Yang

    (Yunnan Agricultural Technology Extension Station)

  • Xiaoping Lian

    (Yunnan University)

  • Liyu Huang

    (Yunnan University)

  • Lin Shao

    (Yunnan University)

  • Jing Zhang

    (Yunnan University)

  • Shiwen Qin

    (Yunnan University)

  • Dayun Tao

    (Yunnan Academy of Agricultural Sciences (YAAS))

  • Timothy E. Crews

    (The Land Institute)

  • Erik J. Sacks

    (University of Illinois at Urbana-Champaign)

  • Jun Lyu

    (No. 51, Lane 669, Changbei Road, Baoshan District)

  • Len J. Wade

    (University of Queensland)

  • Fengyi Hu

    (Yunnan University)

Abstract

There is an urgent need for agricultural systems to intensify sustainably, increasing crop productivity, farmer livelihoods and soil health while using fewer resources. Crop perennialization, the conversion of especially annual grains to perennial forms, has shown such possibility. Here we report the successful breeding of perennial rice and assess its performance and potential. Domesticated, annual Asian rice (Oryza sativa) was hybridized with its perennial African relative Oryza longistaminata. From a single planting, irrigated perennial rice produced grain for eight consecutive harvests over four years, averaging 6.8 Mg ha−1 harvest−1 versus the 6.7 Mg of replanted annual rice, which required additional labour and seed. Four years of cropping with perennial rice resulted in soils accumulating 0.95 Mg ha–1 yr–1 organic carbon and 0.11 Mg ha−1 yr−1 nitrogen, along with increases in soil pH (0.3–0.4) and plant-available water capacity (7.2 mm). Perennial cultivars are strongly preferred by farmers; growing them saves 58.1% of labour and 49.2% of input costs in each regrowth cycle. In 2021, perennial rice was grown on 15,333 ha by 44,752 smallholder farmers in southern China. Suited to a broad range of frost-free environments between 40° N and 40° S, perennial rice is a step change with potential to improve livelihoods, enhance soil quality and inspire research on other perennial grains.

Suggested Citation

  • Shilai Zhang & Guangfu Huang & Yujiao Zhang & Xiutao Lv & Kejiang Wan & Jian Liang & Yupeng Feng & Jinrong Dao & Shukang Wu & Lin Zhang & Xu Yang & Xiaoping Lian & Liyu Huang & Lin Shao & Jing Zhang &, 2023. "Sustained productivity and agronomic potential of perennial rice," Nature Sustainability, Nature, vol. 6(1), pages 28-38, January.
  • Handle: RePEc:nat:natsus:v:6:y:2023:i:1:d:10.1038_s41893-022-00997-3
    DOI: 10.1038/s41893-022-00997-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-022-00997-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-022-00997-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ewen Callaway, 2014. "Domestication: The birth of rice," Nature, Nature, vol. 514(7524), pages 58-59, October.
    2. Guangfu Huang & Shiwen Qin & Shilai Zhang & Xiaolin Cai & Shukang Wu & Jinrong Dao & Jing Zhang & Liyu Huang & Dome Harnpichitvitaya & Len J. Wade & Fengyi Hu, 2018. "Performance, Economics and Potential Impact of Perennial Rice PR23 Relative to Annual Rice Cultivars at Multiple Locations in Yunnan Province of China," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    3. Timothy E. Crews & Douglas J. Cattani, 2018. "Strategies, Advances, and Challenges in Breeding Perennial Grain Crops," Sustainability, MDPI, vol. 10(7), pages 1-7, June.
    4. Twine, Edgar E. & Ndindeng, Sali Atanga & Mujawamariya, Gaudiose & Futakuchi, Koichi, 2022. "Pricing Rice Quality Attributes and Returns to Quality Upgrading in Sub-Saharan Africa," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 54(1), pages 175-196, February.
    5. Bell, Lindsay W. & Byrne (nee Flugge), Felicity & Ewing, Mike A. & Wade, Len J., 2008. "A preliminary whole-farm economic analysis of perennial wheat in an Australian dryland farming system," Agricultural Systems, Elsevier, vol. 96(1-3), pages 166-174, March.
    6. Bhattacharyya, R. & Kundu, S. & Pandey, S.C. & Singh, K.P. & Gupta, H.S., 2008. "Tillage and irrigation effects on crop yields and soil properties under the rice-wheat system in the Indian Himalayas," Agricultural Water Management, Elsevier, vol. 95(9), pages 993-1002, September.
    7. Twine, Edgar & Ndindeng, Sali Atanga & Mujawamariya, Gaudiose & Futakuchi, Koichi, 2022. "Pricing Rice Quality Attributes and Returns to Quality Upgrading in Sub-Saharan Africa – Erratum," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 54(1), pages 197-197, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Douglas John Cattani & Sean Robert Asselin, 2022. "Early Plant Development in Intermediate Wheatgrass," Agriculture, MDPI, vol. 12(7), pages 1-14, June.
    2. Timothy E. Crews & Douglas J. Cattani, 2018. "Strategies, Advances, and Challenges in Breeding Perennial Grain Crops," Sustainability, MDPI, vol. 10(7), pages 1-7, June.
    3. Rajeev Kumar Gupta & Jagroop Kaur & Jasjit Singh Kang & Harmeet Singh & Sukhveer Kaur & Samy Sayed & Ahmed Gaber & Akbar Hossain, 2022. "Tillage in Combination with Rice Straw Retention in a Rice–Wheat System Improves the Productivity and Quality of Wheat Grain through Improving the Soil Physio-Chemical Properties," Land, MDPI, vol. 11(10), pages 1-18, September.
    4. Gulab Singh Yadav & Rahul Datta & Shamina Imran Pathan & Rattan Lal & Ram Swaroop Meena & Subhash Babu & Anup Das & S. N. Bhowmik & Mrinmoy Datta & Poulami Saha & Pawan Kumar Mishra, 2017. "Effects of Conservation Tillage and Nutrient Management Practices on Soil Fertility and Productivity of Rice ( Oryza sativa L.)–Rice System in North Eastern Region of India," Sustainability, MDPI, vol. 9(10), pages 1-17, October.
    5. Agbai & Williams Perekekeme & Tate Joseph Oyinbrakemi, 2022. "The Short Term Effect Of Tillage System On Soil Moisture Retention In Bayelsa State, Nigeria," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 4(1), pages 45-52, October.
    6. Kieu N. Le & Manoj K. Jha & Jaehak Jeong & Philip W. Gassman & Manuel R. Reyes & Luca Doro & Dat Q. Tran & Lyda Hok, 2018. "Evaluation of Long-Term SOC and Crop Productivity within Conservation Systems Using GFDL CM2.1 and EPIC," Sustainability, MDPI, vol. 10(8), pages 1-17, July.
    7. Heather E. Schier & Kathrin A. Eliot & Sterling A. Herron & Lauren K. Landfried & Zoë Migicovsky & Matthew J. Rubin & Allison J. Miller, 2019. "Comparative Analysis of Perennial and Annual Phaseolus Seed Nutrient Concentrations," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
    8. Waldman, Kurt B. & Ortega, David L. & Richardson, Robert B. & Snapp, Sieglinde S., 2017. "Estimating demand for perennial pigeon pea in Malawi using choice experiments," Ecological Economics, Elsevier, vol. 131(C), pages 222-230.
    9. Le, Kieu N. & Jeong, Jaehak & Reyes, Manuel R. & Jha, Manoj K. & Gassman, Philip W. & Doro, Luca & Hok, Lyda & Boulakia, Stéphane, 2018. "Evaluation of the performance of the EPIC model for yield and biomass simulation under conservation systems in Cambodia," Agricultural Systems, Elsevier, vol. 166(C), pages 90-100.
    10. Ranjan Bhattacharyya & Birendra Nath Ghosh & Prasanta Kumar Mishra & Biswapati Mandal & Cherukumalli Srinivasa Rao & Dibyendu Sarkar & Krishnendu Das & Kokkuvayil Sankaranarayanan Anil & Manickam Lali, 2015. "Soil Degradation in India: Challenges and Potential Solutions," Sustainability, MDPI, vol. 7(4), pages 1-43, March.
    11. Ranju Kumari Rathour & Mamta Devi & Pushpak Dahiya & Nitish Sharma & Neelam Kaushik & Dolly Kumari & Pradeep Kumar & Rama Raju Baadhe & Abhishek Walia & Arvind Kumar Bhatt & Ravi Kant Bhatia, 2023. "Recent Trends, Opportunities and Challenges in Sustainable Management of Rice Straw Waste Biomass for Green Biorefinery," Energies, MDPI, vol. 16(3), pages 1-18, February.
    12. Nilsson, Pia & Bommarco, Riccardo & Hansson, Helena & Kuns, Brian & Schaak, Henning, 2022. "Farm performance and input self-sufficiency increases with functional crop diversity on Swedish farms," Ecological Economics, Elsevier, vol. 198(C).
    13. Eugene P. Law & Sandra Wayman & Christopher J. Pelzer & Steven W. Culman & Miguel I. Gómez & Antonio DiTommaso & Matthew R. Ryan, 2022. "Multi-Criteria Assessment of the Economic and Environmental Sustainability Characteristics of Intermediate Wheatgrass Grown as a Dual-Purpose Grain and Forage Crop," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    14. Ranjan Bhattacharyya & Birendra Nath Ghosh & Pradeep Dogra & Prasanta Kumar Mishra & Priyabrata Santra & Suresh Kumar & Michael Augustine Fullen & Uttam Kumar Mandal & Kokkuvayil Sankaranarayanan Anil, 2016. "Soil Conservation Issues in India," Sustainability, MDPI, vol. 8(6), pages 1-37, June.
    15. Roxana Piastrellini & Bárbara María Civit & Alejandro P. Arena, 2015. "Influence of Agricultural Practices on Biotic Production Potential and Climate Regulation Potential. A Case Study for Life Cycle Assessment of Soybean ( Glycine max ) in Argentina," Sustainability, MDPI, vol. 7(4), pages 1-25, April.
    16. Sandra Wayman & Valentine Debray & Stephen Parry & Christophe David & Matthew R. Ryan, 2019. "Perspectives on Perennial Grain Crop Production among Organic and Conventional Farmers in France and the United States," Agriculture, MDPI, vol. 9(11), pages 1-17, November.
    17. N. Tangyuan & H. Bin & J. Nianyuan & T. Shenzhong & L. Zengjia, 2009. "Effects of conservation tillage on soil porosity in maize-wheat cropping system," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 55(8), pages 327-333.
    18. Patrick M. LeHeiget & Emma J. McGeough & Bill Biligetu & Douglas J. Cattani, 2023. "Grain Yield Potential of Intermediate Wheatgrass in Western Canada," Agriculture, MDPI, vol. 13(10), pages 1-20, September.
    19. Waldman, Kurt B. & Richardson, Robert B., 2018. "Confronting Tradeoffs Between Agricultural Ecosystem Services and Adaptation to Climate Change in Mali," Ecological Economics, Elsevier, vol. 150(C), pages 184-193.
    20. Gerhard Gramss & Klaus-Dieter Voigt, 2018. "Turnover of Minerals and Organics in the Postharvest Herbage of Annuals and Perennials: Winter Wheat and Goldenrod," Agriculture, MDPI, vol. 8(11), pages 1-17, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:6:y:2023:i:1:d:10.1038_s41893-022-00997-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.