IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v1y2018i9d10.1038_s41893-018-0134-9.html
   My bibliography  Save this article

Global assessment of water challenges under uncertainty in water scarcity projections

Author

Listed:
  • P. Greve

    (International Institute for Applied Systems Analysis)

  • T. Kahil

    (International Institute for Applied Systems Analysis)

  • J. Mochizuki

    (International Institute for Applied Systems Analysis)

  • T. Schinko

    (International Institute for Applied Systems Analysis)

  • Y. Satoh

    (International Institute for Applied Systems Analysis)

  • P. Burek

    (International Institute for Applied Systems Analysis)

  • G. Fischer

    (International Institute for Applied Systems Analysis)

  • S. Tramberend

    (International Institute for Applied Systems Analysis)

  • R. Burtscher

    (International Institute for Applied Systems Analysis)

  • S. Langan

    (International Institute for Applied Systems Analysis)

  • Y. Wada

    (International Institute for Applied Systems Analysis)

Abstract

Water scarcity, a critical environmental issue worldwide, has primarily been driven by a significant increase in water extractions during the last century. In the coming decades, climate and societal changes are projected to further exacerbate water scarcity in many regions worldwide. Today, a major issue for the ongoing policy debate is to identify interventions able to address water scarcity challenges in the presence of large uncertainties. Here, we take a probabilistic approach to assess global water scarcity projections following feasible combinations of shared socioeconomic pathways and representative concentration pathways for the first half of the twenty-first century. We identify—alongside trends in median water scarcity—changes in the uncertainty range of anticipated water scarcity conditions. Our results show that median water scarcity and the associated range of uncertainty are generally increasing worldwide, including many major river basins. On the basis of these results, we develop a general decision-making framework to enhance policymaking by identifying four representative clusters of specific water policy challenges and needs.

Suggested Citation

  • P. Greve & T. Kahil & J. Mochizuki & T. Schinko & Y. Satoh & P. Burek & G. Fischer & S. Tramberend & R. Burtscher & S. Langan & Y. Wada, 2018. "Global assessment of water challenges under uncertainty in water scarcity projections," Nature Sustainability, Nature, vol. 1(9), pages 486-494, September.
  • Handle: RePEc:nat:natsus:v:1:y:2018:i:9:d:10.1038_s41893-018-0134-9
    DOI: 10.1038/s41893-018-0134-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-018-0134-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-018-0134-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhai, Yijie & Bai, Yueyang & Shen, Xiaoxu & Zhang, Tianzuo & Jia, Yuke & Ren, Ke & Zhou, Xinying & Cheng, Ziyue & Hong, Jinglan, 2023. "Provincial water availability footprint evaluation and transfer analysis of China’s grain products: A life cycle perspective," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Bilancini, Ennio & Boncinelli, Leonardo & Di Paolo, Roberto, 2023. "Game-based education promotes practices supporting sustainable water use," Ecological Economics, Elsevier, vol. 208(C).
    3. Daniel Crespo & Jose Albiac & Taher Kahil & Encarna Esteban & Safa Baccour, 2019. "Tradeoffs between Water Uses and Environmental Flows: A Hydroeconomic Analysis in the Ebro Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2301-2317, May.
    4. Elisa Savelli & Maurizio Mazzoleni & Giuliano Baldassarre & Hannah Cloke & Maria Rusca, 2023. "Urban water crises driven by elites’ unsustainable consumption," Nature Sustainability, Nature, vol. 6(8), pages 929-940, August.
    5. Liu, Yazhou & Bian, Jiacong & Li, Xiangmei & Liu, Shuyi & Lageson, David & Yin, Yingkai, 2020. "The optimization of regional industrial structure under the water-energy constraint: A case study on Hebei Province in China," Energy Policy, Elsevier, vol. 143(C).
    6. Hisham Eldardiry & Emad Habib & David M. Borrok, 2020. "Accounting for Inter-Annual and Seasonal Variability in Assessment of Water Supply Stress: Perspectives from a humid region in the USA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2517-2534, June.
    7. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.
    8. Xueqing Zhao & Jin Shi & Meixia Liu & Saud Uz Zafar & Qin Liu & Ishaq A. Mian & Bushra Khan & Shadman Khan & Yan Zhuang & Wenyi Dong & Enke Liu, 2023. "Spatial Characteristics and Driving Forces of the Water Footprint of Spring Maize Production in Northern China," Agriculture, MDPI, vol. 13(9), pages 1-17, September.
    9. Courtney M. Regan & Jeffery D. Connor & Md Sayed Iftekhar, 2023. "An economic assessment of options for operating within plantation forestry water entitlements and tightening cap and trade policy," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(2), pages 303-322, April.
    10. Mengru Wang & Benjamin Leon Bodirsky & Rhodé Rijneveld & Felicitas Beier & Mirjam P. Bak & Masooma Batool & Bram Droppers & Alexander Popp & Michelle T. H. Vliet & Maryna Strokal, 2024. "A triple increase in global river basins with water scarcity due to future pollution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Javier Martínez-Dalmau & Carlos Gutiérrez-Martín & Alfonso Expósito & Julio Berbel, 2023. "Analysis of Water Pricing Policy Effects in a Mediterranean Basin Through a Hydroeconomic Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1599-1618, March.
    12. Deyou Yu & Licong Xu & Kaixing Fu & Xia Liu & Shanli Wang & Minghua Wu & Wangyang Lu & Chunyu Lv & Jinming Luo, 2024. "Electronic structure modulation of iron sites with fluorine coordination enables ultra-effective H2O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Bahalou Horeh, Marziyeh & Haqiqi, Iman, 2020. "Impacts of Economic Growth and Depression in the US, China, and India on Global Land and Water Resources," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304526, Agricultural and Applied Economics Association.
    14. Li, Mo & Cao, Xiaoxu & Liu, Dong & Fu, Qiang & Li, Tianxiao & Shang, Ruochen, 2022. "Sustainable management of agricultural water and land resources under changing climate and socio-economic conditions: A multi-dimensional optimization approach," Agricultural Water Management, Elsevier, vol. 259(C).
    15. Yue Qin & Chaopeng Hong & Hongyan Zhao & Stefan Siebert & John T. Abatzoglou & Laurie S. Huning & Lindsey L. Sloat & Sohyun Park & Shiyu Li & Darla K. Munroe & Tong Zhu & Steven J. Davis & Nathaniel D, 2022. "Snowmelt risk telecouplings for irrigated agriculture," Nature Climate Change, Nature, vol. 12(11), pages 1007-1015, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:1:y:2018:i:9:d:10.1038_s41893-018-0134-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.