IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64599-1.html
   My bibliography  Save this article

Ionomer engineering for optimized water channels in industry-scale water electrolysis using non-noble metal catalyst

Author

Listed:
  • Qisheng Yan

    (Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science)

  • Cheng Liu

    (Soochow University, Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices)

  • Weihang Li

    (Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science)

  • Kai Sun

    (Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science)

  • Yilin Zhou

    (Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science)

  • Ning Han

    (Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science)

  • Wenzhe Niu

    (Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science)

  • Jinyan Chen

    (Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science)

  • Xiao Yang

    (Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science)

  • Junfeng Chen

    (Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science)

  • Yixiang He

    (Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science)

  • Zhuorong Lu

    (Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science)

  • Youyong Li

    (Soochow University, Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices)

  • Bo Zhang

    (Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science)

Abstract

The application of non-noble metal catalysts to replace high-cost iridium plays a critical role in the industrialization of proton exchange membrane water electrolysis (PEMWE). However, the activity and stability of non-noble metal catalysts are unsatisfactory especially at high current densities. This can partially be attributed to the limited water channels of Nafion ionomer in the catalyst layer which impede proton hydrate transport, resulting in a low local pH and accelerating non-noble metal dissolution. We propose that introducing an amphiphilic-like CF3CF2CF2CH2OH molecule into Nafion ionomer (FOH-Nafion) via molecular engineering, optimizes the mass transfer of proton hydrates and therefore increase the stability of Co-based catalysts under high current densities. More dispersed and interleaved hydrophilic and hydrophobic regions of Nafion lead to efficient channels for proton hydrate transport. Such molecular engineering kept Co3O4 catalyst running over 270 h at 830 mA cm-2, about 4 times that of the pristine Nafion ionomer. The molecular engineering strategy for the water channel in catalyst layer provides a pathway to improve the performance of non-noble metal catalysts in PEMWE.

Suggested Citation

  • Qisheng Yan & Cheng Liu & Weihang Li & Kai Sun & Yilin Zhou & Ning Han & Wenzhe Niu & Jinyan Chen & Xiao Yang & Junfeng Chen & Yixiang He & Zhuorong Lu & Youyong Li & Bo Zhang, 2025. "Ionomer engineering for optimized water channels in industry-scale water electrolysis using non-noble metal catalyst," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64599-1
    DOI: 10.1038/s41467-025-64599-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64599-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64599-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jinzhen Huang & Hongyuan Sheng & R. Dominic Ross & Jiecai Han & Xianjie Wang & Bo Song & Song Jin, 2021. "Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Wenzhe Niu & Jie Feng & Junfeng Chen & Lei Deng & Wen Guo & Huajing Li & Liqiang Zhang & Youyong Li & Bo Zhang, 2024. "High-efficiency C3 electrosynthesis on a lattice-strain-stabilized nitrogen-doped Cu surface," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Yongxiang Liang & Jiankang Zhao & Yu Yang & Sung-Fu Hung & Jun Li & Shuzhen Zhang & Yong Zhao & An Zhang & Cheng Wang & Dominique Appadoo & Lei Zhang & Zhigang Geng & Fengwang Li & Jie Zeng, 2023. "Stabilizing copper sites in coordination polymers toward efficient electrochemical C-C coupling," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Selen Manioglu & Seyed Majed Modaresi & Noah Ritzmann & Johannes Thoma & Sarah A. Overall & Alexander Harms & Gregory Upert & Anatol Luther & Alexander B. Barnes & Daniel Obrecht & Daniel J. Müller & , 2022. "Antibiotic polymyxin arranges lipopolysaccharide into crystalline structures to solidify the bacterial membrane," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
    6. Wenzhe Niu & Zheng Chen & Wen Guo & Wei Mao & Yi Liu & Yunna Guo & Jingzhao Chen & Rui Huang & Lin Kang & Yiwen Ma & Qisheng Yan & Jinyu Ye & Chunyu Cui & Liqiang Zhang & Peng Wang & Xin Xu & Bo Zhang, 2023. "Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Huanyu Jin & Xinyan Liu & Pengfei An & Cheng Tang & Huimin Yu & Qinghua Zhang & Hong-Jie Peng & Lin Gu & Yao Zheng & Taeseup Song & Kenneth Davey & Ungyu Paik & Juncai Dong & Shi-Zhang Qiao, 2023. "Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Wanjie Song & Kang Peng & Wei Xu & Xiang Liu & Huaqing Zhang & Xian Liang & Bangjiao Ye & Hongjun Zhang & Zhengjin Yang & Liang Wu & Xiaolin Ge & Tongwen Xu, 2023. "Upscaled production of an ultramicroporous anion-exchange membrane enables long-term operation in electrochemical energy devices," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingjing Li & Shuqing Fu & Ruijie Wang & Kai Sun & Wenjuan Shi & Yuwen Zeng & Bo Zhang, 2025. "Surface sulfonic-group bonded oxygen evolution catalyst for proton exchange membrane water electrolysis," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    2. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    3. Oliver Wagner & Thomas Adisorn & Lena Tholen & Dagmar Kiyar, 2020. "Surviving the Energy Transition: Development of a Proposal for Evaluating Sustainable Business Models for Incumbents in Germany’s Electricity Market," Energies, MDPI, vol. 13(3), pages 1-17, February.
    4. d'Amore-Domenech, Rafael & Leo, Teresa J. & Pollet, Bruno G., 2021. "Bulk power transmission at sea: Life cycle cost comparison of electricity and hydrogen as energy vectors," Applied Energy, Elsevier, vol. 288(C).
    5. Bichen Yuan & Qian Dang & Hai Liu & Marshet Getaye Sendeku & Jian Peng & Yameng Fan & Liang Cai & Aiqing Cao & Shiyao Chen & Hui Li & Yun Kuang & Fengmei Wang & Xiaoming Sun, 2025. "Synergistic niobium and manganese co-doping into RuO2 nanocrystal enables PEM water splitting under high current," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    6. Engstam, Linus & Janke, Leandro & Sundberg, Cecilia & Nordberg, Åke, 2025. "Optimising power-to-gas integration with wastewater treatment and biogas: A techno-economic assessment of CO2 and by-product utilisation," Applied Energy, Elsevier, vol. 377(PB).
    7. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    8. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
    9. Gorre, Jachin & Ortloff, Felix & van Leeuwen, Charlotte, 2019. "Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Bedoić, Robert & Dorotić, Hrvoje & Schneider, Daniel Rolph & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2021. "Synergy between feedstock gate fee and power-to-gas: An energy and economic analysis of renewable methane production in a biogas plant," Renewable Energy, Elsevier, vol. 173(C), pages 12-23.
    11. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    12. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    13. Liu, Jiang & Yang, Yingying & Kerner, Felix & Schröder, Daniel, 2025. "Unraveling the impact of compression on the performance of porous transport layers in water Electrolyzers," Applied Energy, Elsevier, vol. 381(C).
    14. Jinzhen Huang & Camelia Nicoleta Borca & Thomas Huthwelker & Nur Sena Yüzbasi & Dominika Baster & Mario El Kazzi & Christof W. Schneider & Thomas J. Schmidt & Emiliana Fabbri, 2024. "Surface oxidation/spin state determines oxygen evolution reaction activity of cobalt-based catalysts in acidic environment," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Zhu, Yanxi & Zhang, Yixiang & Bin, Shiyu & Chen, Zeyi & Zhang, Fanhang & Gong, Shihao & Xia, Yan & Duan, Xiongbo, 2024. "Effects of key design and operating parameters on the performance of the PEM water electrolysis for hydrogen production," Renewable Energy, Elsevier, vol. 235(C).
    16. Jiayi Tang & Daqin Guan & Hengyue Xu & Leqi Zhao & Ushtar Arshad & Zijun Fang & Tianjiu Zhu & Manjin Kim & Chi-Wen Pao & Zhiwei Hu & Junjie Ge & Zongping Shao, 2025. "Undoped ruthenium oxide as a stable catalyst for the acidic oxygen evolution reaction," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    17. Lee, Boreum & Lim, Dongjun & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2021. "Techno-economic analysis of H2 energy storage system based on renewable energy certificate," Renewable Energy, Elsevier, vol. 167(C), pages 91-98.
    18. Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.
    19. Yong Zhang & Feifei Chen & Xinyi Yang & Yiran Guo & Xinghua Zhang & Hong Dong & Weihua Wang & Feng Lu & Zunming Lu & Hui Liu & Hui Liu & Yao Xiao & Yahui Cheng, 2025. "Electronic metal-support interaction modulates Cu electronic structures for CO2 electroreduction to desired products," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    20. Liufei Shen & Cheng Zhang & Feiyue Shan & Long Chen & Shuai Liu & Zhiqiang Zheng & Litong Zhu & Jinduo Wang & Xingzheng Wu & Yujia Zhai, 2024. "Review and Prospects of Key Technologies for Integrated Systems in Hydrogen Production from Offshore Superconducting Wind Power," Energies, MDPI, vol. 18(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64599-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.