IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64580-y.html
   My bibliography  Save this article

Conversion from coniferous to broadleaved trees can make European forests more climate-effective

Author

Listed:
  • Yi Yao

    (ETH Zurich)

  • Petra Sieber

    (ETH Zurich)

  • Mathias Hauser

    (ETH Zurich)

  • Jonas Schwaab

    (Leibniz Universität Hannover)

  • Felix Jäger

    (ETH Zurich)

  • Fulden Batibeniz

    (ETH Zurich
    University of Bern
    University of Bern)

  • Meri Räty

    (Ludwig-Maximilians-Universität München (LMU))

  • Julia Pongratz

    (Ludwig-Maximilians-Universität München (LMU)
    Max Planck Institute for Meteorology)

  • Martin Wild

    (ETH Zurich)

  • Andrey Lessa Derci Augustynczik

    (International Institute for Applied Systems Analysis)

  • Steven J. Hertog

    (Ghent University)

  • Verena C. Griess

    (ETH Zurich)

  • Michael G. Windisch

    (ETH Zurich)

  • Jun Ge

    (Nanjing University)

  • Alessio Collalti

    (Institute for Agriculture and Forestry Systems in the Mediterranean-National Research Council of Italy (CNR-ISAFOM))

  • Fulvio Fulvio

    (International Institute for Applied Systems Analysis)

  • Petr Havlík

    (International Institute for Applied Systems Analysis)

  • Sonia I. Seneviratne

    (ETH Zurich)

Abstract

The climate effectiveness of forestation in Europe is debated, as it may provide more warming via solar energy absorption than evaporative cooling. Since forests play an important role in European climate policy, it is necessary to explore potential solutions to this issue in a warmer world. Here, based on experiments conducted with a regional climate model under several forest change scenarios, we find that conversion from coniferous to broadleaved trees in currently forested areas can provide cooling for summer hot extremes (e.g., reducing the monthly mean daily maximum temperature in July over Continental Europe by 0.6 °C). The conversion can also mitigate the undesired warming impacts of forestation with present-day forest composition in most of Europe, e.g., reversing effects on the monthly mean daily maximum temperature in July over Continental Europe from +0.3 °C to −0.7 °C. This study highlights the importance of considering tree species in European forest policy development and suggests that the Northern and Central regions should be prioritised for forestation over the Western and Southern parts.

Suggested Citation

  • Yi Yao & Petra Sieber & Mathias Hauser & Jonas Schwaab & Felix Jäger & Fulden Batibeniz & Meri Räty & Julia Pongratz & Martin Wild & Andrey Lessa Derci Augustynczik & Steven J. Hertog & Verena C. Grie, 2025. "Conversion from coniferous to broadleaved trees can make European forests more climate-effective," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64580-y
    DOI: 10.1038/s41467-025-64580-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64580-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64580-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tianbao Zhao & Aiguo Dai, 2017. "Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes," Climatic Change, Springer, vol. 144(3), pages 535-548, October.
    2. Sebastiaan Luyssaert & Guillaume Marie & Aude Valade & Yi-Ying Chen & Sylvestre Njakou Djomo & James Ryder & Juliane Otto & Kim Naudts & Anne Sofie Lansø & Josefine Ghattas & Matthew J. McGrath, 2018. "Trade-offs in using European forests to meet climate objectives," Nature, Nature, vol. 562(7726), pages 259-262, October.
    3. Quentin Lejeune & Edouard L. Davin & Lukas Gudmundsson & Johannes Winckler & Sonia I. Seneviratne, 2018. "Historical deforestation locally increased the intensity of hot days in northern mid-latitudes," Nature Climate Change, Nature, vol. 8(5), pages 386-390, May.
    4. Yan Li & Maosheng Zhao & Safa Motesharrei & Qiaozhen Mu & Eugenia Kalnay & Shuangcheng Li, 2015. "Local cooling and warming effects of forests based on satellite observations," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    5. Richard A. Betts, 2000. "Offset of the potential carbon sink from boreal forestation by decreases in surface albedo," Nature, Nature, vol. 408(6809), pages 187-190, November.
    6. O'Brien, Meghan & Bringezu, Stefan, 2018. "European Timber Consumption: Developing a Method to Account for Timber Flows and the EU's Global Forest Footprint," Ecological Economics, Elsevier, vol. 147(C), pages 322-332.
    7. Detlef P. van Vuuren & Elke Stehfest & David E. H. J. Gernaat & Maarten Berg & David L. Bijl & Harmen Sytze Boer & Vassilis Daioglou & Jonathan C. Doelman & Oreane Y. Edelenbosch & Mathijs Harmsen & A, 2018. "Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies," Nature Climate Change, Nature, vol. 8(5), pages 391-397, May.
    8. Giacomo Grassi & Jo House & Frank Dentener & Sandro Federici & Michel den Elzen & Jim Penman, 2017. "The key role of forests in meeting climate targets requires science for credible mitigation," Nature Climate Change, Nature, vol. 7(3), pages 220-226, March.
    9. Michael G. Windisch & Edouard L. Davin & Sonia I. Seneviratne, 2021. "Prioritizing forestation based on biogeochemical and local biogeophysical impacts," Nature Climate Change, Nature, vol. 11(10), pages 867-871, October.
    10. Chantelle Burton & Seppe Lampe & Douglas I. Kelley & Wim Thiery & Stijn Hantson & Nikos Christidis & Lukas Gudmundsson & Matthew Forrest & Eleanor Burke & Jinfeng Chang & Huilin Huang & Akihiko Ito & , 2024. "Global burned area increasingly explained by climate change," Nature Climate Change, Nature, vol. 14(11), pages 1186-1192, November.
    11. Joeri Rogelj & Alexander Popp & Katherine V. Calvin & Gunnar Luderer & Johannes Emmerling & David Gernaat & Shinichiro Fujimori & Jessica Strefler & Tomoko Hasegawa & Giacomo Marangoni & Volker Krey &, 2018. "Scenarios towards limiting global mean temperature increase below 1.5 °C," Nature Climate Change, Nature, vol. 8(4), pages 325-332, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Ge & Qi Liu & Beilei Zan & Zhiqiang Lin & Sha Lu & Bo Qiu & Weidong Guo, 2022. "Deforestation intensifies daily temperature variability in the northern extratropics," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Mohsen Khezri, 2025. "Impact of Various Land Cover Transformations on Climate Change: Insights from a Spatial Panel Analysis," Data, MDPI, vol. 10(2), pages 1-21, January.
    3. Jingmeng Wang & Wei Li & Philippe Ciais & Laurent Z. X. Li & Jinfeng Chang & Daniel Goll & Thomas Gasser & Xiaomeng Huang & Narayanappa Devaraju & Olivier Boucher, 2021. "Global cooling induced by biophysical effects of bioenergy crop cultivation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Yitao Li & Jun Ge & Hua Wu & Ronglin Tang & Yuanliang Cheng & Xiangyang Liu & Yi Wang & Wei Zhao & Caixia Gao & Si-Bo Duan & Qian Shi & Pei Leng & Enyu Zhao & Guangjian Yan & Xiaoning Song & Chenghu Z, 2025. "Amplified local cooling effect of forestation in warming Europe," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    5. Yitao Li & Zhao-Liang Li & Hua Wu & Chenghu Zhou & Xiangyang Liu & Pei Leng & Peng Yang & Wenbin Wu & Ronglin Tang & Guo-Fei Shang & Lingling Ma, 2023. "Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Duveiller, Gregory & Caporaso, Luca & Abad-Viñas, Raul & Perugini, Lucia & Grassi, Giacomo & Arneth, Almut & Cescatti, Alessandro, 2020. "Local biophysical effects of land use and land cover change: towards an assessment tool for policy makers," Land Use Policy, Elsevier, vol. 91(C).
    7. Hao Luo & Johannes Quaas & Yong Han, 2024. "Decreased cloud cover partially offsets the cooling effects of surface albedo change due to deforestation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Yang Ou & Christopher Roney & Jameel Alsalam & Katherine Calvin & Jared Creason & Jae Edmonds & Allen A. Fawcett & Page Kyle & Kanishka Narayan & Patrick O’Rourke & Pralit Patel & Shaun Ragnauth & Ste, 2021. "Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    10. Liu, Haifeng & Ampah, Jeffrey Dankwa & Afrane, Sandylove & Adun, Humphrey & Jin, Chao & Yao, Mingfa, 2023. "Deployment of hydrogen in hard-to-abate transport sectors under limited carbon dioxide removal (CDR): Implications on global energy-land-water system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    11. Michel G. J. Elzen & Ioannis Dafnomilis & Nicklas Forsell & Panagiotis Fragkos & Kostas Fragkiadakis & Niklas Höhne & Takeshi Kuramochi & Leonardo Nascimento & Mark Roelfsema & Heleen Soest & Frank Sp, 2022. "Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-29, August.
    12. Suchocka, Marzena & Heciak, Jakub & Błaszczyk, Magdalena & Adamczyk, Joanna & Gaworski, Marek & Gawłowska, Agnieszka & Mojski, Jacek & Kalaji, Hazem M. & Kais, Karolina & Kosno-Jończy, Joanna & Heciak, 2023. "Comparison of Ecosystem Services and Replacement Value calculations performed for urban trees," Ecosystem Services, Elsevier, vol. 63(C).
    13. Shu Liu & Yong Wang & Guang J. Zhang & Linyi Wei & Bin Wang & Le Yu, 2022. "Contrasting influences of biogeophysical and biogeochemical impacts of historical land use on global economic inequality," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Kan, Xiaoming & Hedenus, Fredrik & Reichenberg, Lina, 2025. "Chasing the eternal sun: Does a global super grid favor the deployment of solar power?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    15. Keiner, Dominik & Gulagi, Ashish & Breyer, Christian, 2023. "Energy demand estimation using a pre-processing macro-economic modelling tool for 21st century transition analyses," Energy, Elsevier, vol. 272(C).
    16. M.J. Mace & Claire L. Fyson & Michiel Schaeffer & William L. Hare, 2021. "Large‐Scale Carbon Dioxide Removal to Meet the 1.5°C Limit: Key Governance Gaps, Challenges and Priority Responses," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 67-81, April.
    17. Lynn M. Riley & Susan C. Cook-Patton & Loren P. Albert & Christopher J. Still & Christopher A. Williams & Jacob J. Bukoski, 2025. "Accounting for albedo in carbon market protocols," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    18. Xin Zhao & Bryan K. Mignone & Marshall A. Wise & Haewon C. McJeon, 2024. "Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Raphael Portmann & Urs Beyerle & Edouard Davin & Erich M. Fischer & Steven Hertog & Sebastian Schemm, 2022. "Global forestation and deforestation affect remote climate via adjusted atmosphere and ocean circulation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Yitao Li & Zhao-Liang Li & Hua Wu & Xiangyang Liu & Xu Lian & Menglin Si & Jing Li & Chenghu Zhou & Ronglin Tang & Sibo Duan & Wei Zhao & Pei Leng & Xiaoning Song & Qian Shi & Enyu Zhao & Caixia Gao, 2025. "Observed different impacts of potential tree restoration on local surface and air temperature," Nature Communications, Nature, vol. 16(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64580-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.