IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60878-z.html
   My bibliography  Save this article

Advancing spatio-temporal processing through adaptation in spiking neural networks

Author

Listed:
  • Maximilian Baronig

    (Graz University of Technology
    Silicon Austria Labs)

  • Romain Ferrand

    (Graz University of Technology
    Silicon Austria Labs)

  • Silvester Sabathiel

    (Silicon Austria Labs GmbH)

  • Robert Legenstein

    (Graz University of Technology)

Abstract

Implementations of spiking neural networks on neuromorphic hardware promise orders of magnitude less power consumption than their non-spiking counterparts. The standard neuron model for spike-based computation on such systems has long been the leaky integrate-and-fire neuron. A computationally light augmentation of this neuron model with an adaptation mechanism has recently been shown to exhibit superior performance on spatio-temporal processing tasks. The root of the superiority of these so-called adaptive leaky integrate-and-fire neurons however is not well understood. In this article, we thoroughly analyze the dynamical, computational, and learning properties of adaptive leaky integrate-and-fire neurons and networks thereof. Our investigation reveals significant challenges related to stability and parameterization when employing the conventional Euler-Forward discretization for this class of models. We report a rigorous theoretical and empirical demonstration that these challenges can be effectively addressed by adopting an alternative discretization approach – the Symplectic Euler method, allowing to improve over state-of-the-art performances on common event-based benchmark datasets. Our further analysis of the computational properties of these networks shows that they are particularly well suited to exploit the spatio-temporal structure of input sequences without any normalization techniques.

Suggested Citation

  • Maximilian Baronig & Romain Ferrand & Silvester Sabathiel & Robert Legenstein, 2025. "Advancing spatio-temporal processing through adaptation in spiking neural networks," Nature Communications, Nature, vol. 16(1), pages 1-26, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60878-z
    DOI: 10.1038/s41467-025-60878-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60878-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60878-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hanle Zheng & Zhong Zheng & Rui Hu & Bo Xiao & Yujie Wu & Fangwen Yu & Xue Liu & Guoqi Li & Lei Deng, 2024. "Temporal dendritic heterogeneity incorporated with spiking neural networks for learning multi-timescale dynamics," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Nicolas Perez-Nieves & Vincent C. H. Leung & Pier Luigi Dragotti & Dan F. M. Goodman, 2021. "Neural heterogeneity promotes robust learning," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Christopher D. Harvey & Philip Coen & David W. Tank, 2012. "Choice-specific sequences in parietal cortex during a virtual-navigation decision task," Nature, Nature, vol. 484(7392), pages 62-68, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcello, Salustri & Shunra, Yoshida & Ruggero, Micheletto, 2023. "Neural and axonal heterogeneity improves information transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    2. Karim G Habashy & Benjamin D Evans & Dan F M Goodman & Jeffrey S Bowers, 2024. "Adapting to time: Why nature may have evolved a diverse set of neurons," PLOS Computational Biology, Public Library of Science, vol. 20(12), pages 1-19, December.
    3. Simone D’Agostino & Filippo Moro & Tristan Torchet & Yiğit Demirağ & Laurent Grenouillet & Niccolò Castellani & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "DenRAM: neuromorphic dendritic architecture with RRAM for efficient temporal processing with delays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Nora Lenkey & Anna Christina Garvert & Máté Neubrandt & Birgit Kriener & Koen Vervaeke, 2025. "Brain region-specific gain modulation of place cells by VIP neurons," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    5. Asako Noguchi & Roman Huszár & Shota Morikawa & György Buzsáki & Yuji Ikegaya, 2022. "Inhibition allocates spikes during hippocampal ripples," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Hong Yu & Xinkuan Xiang & Zongming Chen & Xu Wang & Jiaqi Dai & Xinxin Wang & Pengcheng Huang & Zheng-dong Zhao & Wei L. Shen & Haohong Li, 2021. "Periaqueductal gray neurons encode the sequential motor program in hunting behavior of mice," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    7. Benjamin R Cowley & Matthew A Smith & Adam Kohn & Byron M Yu, 2016. "Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.
    8. A. Barri & M. T. Wiechert & M. Jazayeri & D. A. DiGregorio, 2022. "Synaptic basis of a sub-second representation of time in a neural circuit model," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Adeeti Aggarwal & Connor Brennan & Jennifer Luo & Helen Chung & Diego Contreras & Max B. Kelz & Alex Proekt, 2022. "Visual evoked feedforward–feedback traveling waves organize neural activity across the cortical hierarchy in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Kaushik J. Lakshminarasimhan & Eric Avila & Xaq Pitkow & Dora E. Angelaki, 2023. "Dynamical latent state computation in the male macaque posterior parietal cortex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    11. John Palmer & Adam Keane & Pulin Gong, 2017. "Learning and executing goal-directed choices by internally generated sequences in spiking neural circuits," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-23, July.
    12. Kim, Seil & Ogawa, Keiichi, 2024. "Who is able or unable to return to school? Exploring the short-term impact of the COVID-19 school closures on students' returning to school in Nigeria," International Journal of Educational Development, Elsevier, vol. 108(C).
    13. David Kappel & Bernhard Nessler & Wolfgang Maass, 2014. "STDP Installs in Winner-Take-All Circuits an Online Approximation to Hidden Markov Model Learning," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-22, March.
    14. Michalis Pagkalos & Spyridon Chavlis & Panayiota Poirazi, 2023. "Introducing the Dendrify framework for incorporating dendrites to spiking neural networks," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Alejandro Tlaie & Muad Y. Abd El Hay & Berkutay Mert & Robert Taylor & Pierre-Antoine Ferracci & Katharine Shapcott & Mina Glukhova & Jonathan W. Pillow & Martha N. Havenith & Marieke L. Schölvinck, 2025. "Inferring internal states across mice and monkeys using facial features," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    16. Hanle Zheng & Zhong Zheng & Rui Hu & Bo Xiao & Yujie Wu & Fangwen Yu & Xue Liu & Guoqi Li & Lei Deng, 2024. "Temporal dendritic heterogeneity incorporated with spiking neural networks for learning multi-timescale dynamics," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    17. Shinichiro Kira & Houman Safaai & Ari S. Morcos & Stefano Panzeri & Christopher D. Harvey, 2023. "A distributed and efficient population code of mixed selectivity neurons for flexible navigation decisions," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    18. Myriah Haggard & Maurice J Chacron, 2023. "Coding of object location by heterogeneous neural populations with spatially dependent correlations in weakly electric fish," PLOS Computational Biology, Public Library of Science, vol. 19(3), pages 1-29, March.
    19. Roxana Zeraati & Yan-Liang Shi & Nicholas A. Steinmetz & Marc A. Gieselmann & Alexander Thiele & Tirin Moore & Anna Levina & Tatiana A. Engel, 2023. "Intrinsic timescales in the visual cortex change with selective attention and reflect spatial connectivity," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    20. Hugh Greatorex & Ole Richter & Michele Mastella & Madison Cotteret & Philipp Klein & Maxime Fabre & Arianna Rubino & Willian Soares Girão & Junren Chen & Martin Ziegler & Laura Bégon-Lours & Giacomo I, 2025. "A neuromorphic processor with on-chip learning for beyond-CMOS device integration," Nature Communications, Nature, vol. 16(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60878-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.