IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005185.html
   My bibliography  Save this article

Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex

Author

Listed:
  • Benjamin R Cowley
  • Matthew A Smith
  • Adam Kohn
  • Byron M Yu

Abstract

Dimensionality reduction has been applied in various brain areas to study the activity of populations of neurons. To interpret the outputs of dimensionality reduction, it is important to first understand its outputs for brain areas for which the relationship between the stimulus and neural response is well characterized. Here, we applied principal component analysis (PCA) to trial-averaged neural responses in macaque primary visual cortex (V1) to study two fundamental, population-level questions. First, we characterized how neural complexity relates to stimulus complexity, where complexity is measured using relative comparisons of dimensionality. Second, we assessed the extent to which responses to different stimuli occupy similar dimensions of the population activity space using a novel statistical method. For comparison, we performed the same dimensionality reduction analyses on the activity of a recently-proposed V1 receptive field model and a deep convolutional neural network. Our results show that the dimensionality of the population response changes systematically with alterations in the properties and complexity of the visual stimulus.Author Summary: A central goal in systems neuroscience is to understand how large populations of neurons work together to enable us to sense, to reason, and to act. To go beyond single-neuron and pairwise analyses, recent studies have applied dimensionality reduction methods to neural population activity to reveal tantalizing evidence of neural mechanisms underlying a wide range of brain functions. To aid in interpreting the outputs of dimensionality reduction, it is important to vary the inputs to a brain area and ask whether the outputs of dimensionality reduction change in a sensible manner, which has not yet been shown. In this study, we recorded the activity of tens of neurons in the primary visual cortex (V1) of macaque monkeys while presenting different visual stimuli. We found that the dimensionality of the population activity grows with stimulus complexity, and that the population responses to different stimuli occupy similar dimensions of the population firing rate space, in accordance with the visual stimuli themselves. For comparison, we applied the same analysis methods to the activity of a recently-proposed V1 receptive field model and a deep convolutional neural network. Overall, we found dimensionality reduction to yield interpretable results, providing encouragement for the use of dimensionality reduction in other brain areas.

Suggested Citation

  • Benjamin R Cowley & Matthew A Smith & Adam Kohn & Byron M Yu, 2016. "Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.
  • Handle: RePEc:plo:pcbi00:1005185
    DOI: 10.1371/journal.pcbi.1005185
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005185
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005185&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. József Fiser & Chiayu Chiu & Michael Weliky, 2004. "Small modulation of ongoing cortical dynamics by sensory input during natural vision," Nature, Nature, vol. 431(7008), pages 573-578, September.
    2. Valerio Mante & David Sussillo & Krishna V. Shenoy & William T. Newsome, 2013. "Context-dependent computation by recurrent dynamics in prefrontal cortex," Nature, Nature, vol. 503(7474), pages 78-84, November.
    3. Patrick T. Sadtler & Kristin M. Quick & Matthew D. Golub & Steven M. Chase & Stephen I. Ryu & Elizabeth C. Tyler-Kabara & Byron M. Yu & Aaron P. Batista, 2014. "Neural constraints on learning," Nature, Nature, vol. 512(7515), pages 423-426, August.
    4. Kristofer E. Bouchard & Nima Mesgarani & Keith Johnson & Edward F. Chang, 2013. "Functional organization of human sensorimotor cortex for speech articulation," Nature, Nature, vol. 495(7441), pages 327-332, March.
    5. Mark M. Churchland & John P. Cunningham & Matthew T. Kaufman & Justin D. Foster & Paul Nuyujukian & Stephen I. Ryu & Krishna V. Shenoy, 2012. "Neural population dynamics during reaching," Nature, Nature, vol. 487(7405), pages 51-56, July.
    6. Gidon Felsen & Jon Touryan & Feng Han & Yang Dan, 2005. "Cortical Sensitivity to Visual Features in Natural Scenes," PLOS Biology, Public Library of Science, vol. 3(10), pages 1-1, September.
    7. Mattia Rigotti & Omri Barak & Melissa R. Warden & Xiao-Jing Wang & Nathaniel D. Daw & Earl K. Miller & Stefano Fusi, 2013. "The importance of mixed selectivity in complex cognitive tasks," Nature, Nature, vol. 497(7451), pages 585-590, May.
    8. Nuo Li & Kayvon Daie & Karel Svoboda & Shaul Druckmann, 2016. "Robust neuronal dynamics in premotor cortex during motor planning," Nature, Nature, vol. 532(7600), pages 459-464, April.
    9. Christopher D. Harvey & Philip Coen & David W. Tank, 2012. "Choice-specific sequences in parietal cortex during a virtual-navigation decision task," Nature, Nature, vol. 484(7392), pages 62-68, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryan C Williamson & Benjamin R Cowley & Ashok Litwin-Kumar & Brent Doiron & Adam Kohn & Matthew A Smith & Byron M Yu, 2016. "Scaling Properties of Dimensionality Reduction for Neural Populations and Network Models," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-27, December.
    2. Ege Altan & Sara A Solla & Lee E Miller & Eric J Perreault, 2021. "Estimating the dimensionality of the manifold underlying multi-electrode neural recordings," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-23, November.
    3. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    4. Kaushik J. Lakshminarasimhan & Eric Avila & Xaq Pitkow & Dora E. Angelaki, 2023. "Dynamical latent state computation in the male macaque posterior parietal cortex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. David Kappel & Bernhard Nessler & Wolfgang Maass, 2014. "STDP Installs in Winner-Take-All Circuits an Online Approximation to Hidden Markov Model Learning," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-22, March.
    6. Tanner C Dixon & Christina M Merrick & Joni D Wallis & Richard B Ivry & Jose M Carmena, 2021. "Hybrid dedicated and distributed coding in PMd/M1 provides separation and interaction of bilateral arm signals," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-35, November.
    7. Shinichiro Kira & Houman Safaai & Ari S. Morcos & Stefano Panzeri & Christopher D. Harvey, 2023. "A distributed and efficient population code of mixed selectivity neurons for flexible navigation decisions," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    8. Weilun Sun & Ilseob Choi & Stoyan Stoyanov & Oleg Senkov & Evgeni Ponimaskin & York Winter & Janelle M. P. Pakan & Alexander Dityatev, 2021. "Context value updating and multidimensional neuronal encoding in the retrosplenial cortex," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    9. Chris. I. De Zeeuw & Julius Koppen & George. G. Bregman & Marit Runge & Devika Narain, 2023. "Heterogeneous encoding of temporal stimuli in the cerebellar cortex," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Jan Weber & Anne-Kristin Solbakk & Alejandro O. Blenkmann & Anais Llorens & Ingrid Funderud & Sabine Leske & Pål Gunnar Larsson & Jugoslav Ivanovic & Robert T. Knight & Tor Endestad & Randolph F. Helf, 2024. "Ramping dynamics and theta oscillations reflect dissociable signatures during rule-guided human behavior," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Wenyi Zhang & Yang Xie & Tianming Yang, 2022. "Reward salience but not spatial attention dominates the value representation in the orbitofrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Nir Even-Chen & Blue Sheffer & Saurabh Vyas & Stephen I Ryu & Krishna V Shenoy, 2019. "Structure and variability of delay activity in premotor cortex," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-17, February.
    13. Josh Merel & Donald M Pianto & John P Cunningham & Liam Paninski, 2015. "Encoder-Decoder Optimization for Brain-Computer Interfaces," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-25, June.
    14. Hagai Lalazar & L F Abbott & Eilon Vaadia, 2016. "Tuning Curves for Arm Posture Control in Motor Cortex Are Consistent with Random Connectivity," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-27, May.
    15. Javier G. Orlandi & Mohammad Abdolrahmani & Ryo Aoki & Dmitry R. Lyamzin & Andrea Benucci, 2023. "Distributed context-dependent choice information in mouse posterior cortex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Kiyohito Iigaya & Sanghyun Yi & Iman A. Wahle & Sandy Tanwisuth & Logan Cross & John P. O’Doherty, 2023. "Neural mechanisms underlying the hierarchical construction of perceived aesthetic value," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Takuya Ito & Guangyu Robert Yang & Patryk Laurent & Douglas H. Schultz & Michael W. Cole, 2022. "Constructing neural network models from brain data reveals representational transformations linked to adaptive behavior," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. Sravani Kondapavulur & Stefan M. Lemke & David Darevsky & Ling Guo & Preeya Khanna & Karunesh Ganguly, 2022. "Transition from predictable to variable motor cortex and striatal ensemble patterning during behavioral exploration," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    19. Daniel Durstewitz, 2017. "A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-33, June.
    20. João D. Semedo & Anna I. Jasper & Amin Zandvakili & Aravind Krishna & Amir Aschner & Christian K. Machens & Adam Kohn & Byron M. Yu, 2022. "Feedforward and feedback interactions between visual cortical areas use different population activity patterns," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.