IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60633-4.html
   My bibliography  Save this article

Leaf economic strategies drive global variation in phosphorus stimulation of terrestrial plant production

Author

Listed:
  • Nan Yang

    (Chinese Academy of Sciences
    China National Botanical Garden
    Yuquanlu)

  • Constantin M. Zohner

    (Universitätsstrasse 16)

  • Thomas W. Crowther

    (Universitätsstrasse 16)

  • Jiguang Feng

    (Inner Mongolia University
    Hohai University)

  • Jin Wu

    (The University of Hong Kong
    The University of Hong Kong
    Chinese University of Hong Kong)

  • Xinli Chen

    (Zhejiang A&F University)

  • Wenxuan Han

    (China Agricultural University)

  • Benjamin D. Stocker

    (University of Bern)

  • Dafeng Hui

    (Tennessee State University)

  • Laurent Augusto

    (ISPA)

  • Kai Yue

    (Fujian Normal University)

  • Enqing Hou

    (Chinese Academy of Sciences
    Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China)

  • Mingkai Jiang

    (Zhejiang University)

  • Huili Feng

    (Hainan University)

  • Zixin Chen

    (Chinese Academy of Sciences
    China National Botanical Garden
    Yuquanlu)

  • Wenjuan Wu

    (Chinese Academy of Sciences
    China National Botanical Garden
    Yuquanlu)

  • Aijun Xing

    (Chinese Academy of Sciences
    China National Botanical Garden
    Yuquanlu)

  • Chengrong Chen

    (Griffith University
    Griffith University)

  • Jordi Sardans

    (Bellaterra
    Cerdanyola del Vallès)

  • Yiqi Luo

    (Cornell University)

  • Josep Peñuelas

    (Bellaterra
    Cerdanyola del Vallès)

  • Hans Lambers

    (The University of Western Australia)

  • Jingyun Fang

    (Peking University
    Peking University)

  • Zhengbing Yan

    (Chinese Academy of Sciences
    China National Botanical Garden
    Yuquanlu)

Abstract

Plant biomass and its allocation are fundamental for understanding biospheric matter production. However, the impacts of atmospheric phosphorus (P) deposition on species-specific biomass and its allocation in global terrestrial plants remain unclear. By synthesizing 5548 observations of plant biomass and its allocation related to P addition worldwide, we find that P addition increases plant biomass by an average of 35% globally. This increase varies across plant functional groups, with stronger responses in deciduous (45%), C3 (36%), and N2-fixing plants (54%) than in evergreen (28%), C4 (19%), and non-N2-fixing plants (31%), respectively. Plants possessing traits indicative of an acquisitive strategy, such as higher nutrient concentrations and specific leaf area, faster photosynthetic rates and shorter leaf lifespan, are particularly responsive to P addition. Furthermore, P addition promotes a greater allocation of biomass to aboveground than belowground organs, resulting in a 5% decrease in root-to-shoot ratio. Our findings provide global-scale quantifications of how P addition regulates biomass accumulation and allocation strategies in terrestrial plants, offering critical insights for predicting the response of terrestrial carbon storage to rising atmospheric P deposition.

Suggested Citation

  • Nan Yang & Constantin M. Zohner & Thomas W. Crowther & Jiguang Feng & Jin Wu & Xinli Chen & Wenxuan Han & Benjamin D. Stocker & Dafeng Hui & Laurent Augusto & Kai Yue & Enqing Hou & Mingkai Jiang & Hu, 2025. "Leaf economic strategies drive global variation in phosphorus stimulation of terrestrial plant production," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60633-4
    DOI: 10.1038/s41467-025-60633-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60633-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60633-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark Pagel, 1999. "Inferring the historical patterns of biological evolution," Nature, Nature, vol. 401(6756), pages 877-884, October.
    2. Enqing Hou & Yiqi Luo & Yuanwen Kuang & Chengrong Chen & Xiankai Lu & Lifen Jiang & Xianzhen Luo & Dazhi Wen, 2020. "Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Ian J. Wright & Peter B. Reich & Mark Westoby & David D. Ackerly & Zdravko Baruch & Frans Bongers & Jeannine Cavender-Bares & Terry Chapin & Johannes H. C. Cornelissen & Matthias Diemer & Jaume Flexas, 2004. "The worldwide leaf economics spectrum," Nature, Nature, vol. 428(6985), pages 821-827, April.
    4. S. Joseph Wright, 2022. "Low phosphorus levels limit carbon capture by Amazonian forests," Nature, Nature, vol. 608(7923), pages 476-477, August.
    5. David S. Ellsworth & Kristine Y. Crous & Martin G. Kauwe & Lore T. Verryckt & Daniel Goll & Sönke Zaehle & Keith J. Bloomfield & Philippe Ciais & Lucas A. Cernusak & Tomas F. Domingues & Mirindi Eric , 2022. "Convergence in phosphorus constraints to photosynthesis in forests around the world," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Jessica Gurevitch & Julia Koricheva & Shinichi Nakagawa & Gavin Stewart, 2018. "Meta-analysis and the science of research synthesis," Nature, Nature, vol. 555(7695), pages 175-182, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cinar, Ozan & Nakagawa, Shinichi & Viechtbauer, Wolfgang, 2020. "Phylogenetic multilevel meta-analysis: A simulation study on the importance of modeling the phylogeny," EcoEvoRxiv su4zv, Center for Open Science.
    2. Daniel S. Maynard & Lalasia Bialic-Murphy & Constantin M. Zohner & Colin Averill & Johan Hoogen & Haozhi Ma & Lidong Mo & Gabriel Reuben Smith & Alicia T. R. Acosta & Isabelle Aubin & Erika Berenguer , 2022. "Global relationships in tree functional traits," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Valentin Journé & Andrew Hacket-Pain & Michał Bogdziewicz, 2023. "Evolution of masting in plants is linked to investment in low tissue mortality," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. David S. Ellsworth & Kristine Y. Crous & Martin G. Kauwe & Lore T. Verryckt & Daniel Goll & Sönke Zaehle & Keith J. Bloomfield & Philippe Ciais & Lucas A. Cernusak & Tomas F. Domingues & Mirindi Eric , 2022. "Convergence in phosphorus constraints to photosynthesis in forests around the world," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Rodrigo S Rios & Cristian Salgado-Luarte & Ernesto Gianoli, 2014. "Species Divergence and Phylogenetic Variation of Ecophysiological Traits in Lianas and Trees," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-10, June.
    6. repec:plo:ppat00:1004214 is not listed on IDEAS
    7. Jonas Eberle & Renier Myburgh & Dirk Ahrens, 2014. "The Evolution of Morphospace in Phytophagous Scarab Chafers: No Competition - No Divergence?," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-16, May.
    8. Phu Nguyen-Van & Anne Stenger & Tuyen Tiet, 2021. "Social incentive factors in interventions promoting sustainable behaviors: A meta-analysis," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-27, December.
    9. Mark C Mainwaring & Jenő Nagy & Mark E Hauber, 2021. "Sex-specific contributions to nest building in birds," Behavioral Ecology, International Society for Behavioral Ecology, vol. 32(6), pages 1075-1085.
    10. Yujie Wang & Renato K. Braghiere & Woodward W. Fischer & Yitong Yao & Zhaoyi Shen & Tapio Schneider & A. Anthony Bloom & David Schimel & Holly Croft & Alexander J. Winkler & Markus Reichstein & Christ, 2025. "Impacts of leaf traits on vegetation optical properties in Earth system modeling," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    11. Lukas Hafner & Maxime Pichon & Christophe Burucoa & Sophie H. A. Nusser & Alexandra Moura & Marc Garcia-Garcera & Marc Lecuit, 2021. "Listeria monocytogenes faecal carriage is common and depends on the gut microbiota," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    12. Annie Bissonnette & Mathias Franz & Oliver Schülke & Julia Ostner, 2014. "Socioecology, but not cognition, predicts male coalitions across primates," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(4), pages 794-801.
    13. Maria Wanic & Mariola Parzonka, 2023. "Assessing the Role of Crop Rotation in Shaping Foliage Characteristics and Leaf Gas Exchange Parameters for Winter Wheat," Agriculture, MDPI, vol. 13(5), pages 1-20, April.
    14. Guiyao Zhou & Nico Eisenhauer & Zhenggang Du & Manuel Esteban Lucas-Borja & Kaiyan Zhai & Miguel Berdugo & Huimin Duan & Han Wu & Shengen Liu & Daniel Revillini & Tadeo Sáez-Sandino & Hua Chai & Xuhui, 2025. "Fire-driven disruptions of global soil biochemical relationships," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    15. Alexander L. Brown & Taisuke Imai & Ferdinand M. Vieider & Colin F. Camerer, 2024. "Meta-analysis of Empirical Estimates of Loss Aversion," Journal of Economic Literature, American Economic Association, vol. 62(2), pages 485-516, June.
    16. Elspeth Kenny & Tim R. Birkhead & Jonathan P. Green, 2017. "Allopreening in birds is associated with parental cooperation over offspring care and stable pair bonds across years," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(4), pages 1142-1148.
    17. Fernandes, Heitor B.F. & Peñaherrera-Aguirre, Mateo & Woodley of Menie, Michael A. & Figueredo, Aurelio José, 2020. "Macroevolutionary patterns and selection modes for general intelligence (G) and for commonly used neuroanatomical volume measures in primates," Intelligence, Elsevier, vol. 80(C).
    18. Yeonggeun Song & Sukwoo Kim & Haeun Koo & Hyeonhwa Kim & Kidae Kim & Jaeuk Lee & Sujin Jang & Kyeong Cheol Lee, 2023. "Assessing the Suitability of Sediment Soil to Be Reused by Different Soil Treatments for Forest Agriculture," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    19. L. M. Diele-Viegas & R. T. Figueroa & B. Vilela & C. F. D. Rocha, 2020. "Are reptiles toast? A worldwide evaluation of Lepidosauria vulnerability to climate change," Climatic Change, Springer, vol. 159(4), pages 581-599, April.
    20. Yudi Wu & Simeng Li & Gang Chen, 2024. "Hydrogels as water and nutrient reservoirs in agricultural soil: a comprehensive review of classification, performance, and economic advantages," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 24653-24685, October.
    21. Yi Lei & Jing Gao & Qi Wang & Weiying Zeng & Dhungana Diwakar & Yaodan Zhang & Xianming Tan & Zudong Sun & Feng Yang & Wenyu Yang, 2024. "Cyclic Electron Flow Alleviates the Stress of Light Fluctuation on Soybean Photosynthesis," Agriculture, MDPI, vol. 14(7), pages 1-12, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60633-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.