IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60149-x.html
   My bibliography  Save this article

Impacts of leaf traits on vegetation optical properties in Earth system modeling

Author

Listed:
  • Yujie Wang

    (University of Science and Technology of China
    California Institute of Technology)

  • Renato K. Braghiere

    (California Institute of Technology
    California Institute of Technology)

  • Woodward W. Fischer

    (California Institute of Technology)

  • Yitong Yao

    (California Institute of Technology)

  • Zhaoyi Shen

    (California Institute of Technology)

  • Tapio Schneider

    (California Institute of Technology)

  • A. Anthony Bloom

    (California Institute of Technology)

  • David Schimel

    (California Institute of Technology)

  • Holly Croft

    (University of Sheffield)

  • Alexander J. Winkler

    (Max-Planck-Institute for Biogeochemistry)

  • Markus Reichstein

    (Max-Planck-Institute for Biogeochemistry)

  • Christian Frankenberg

    (California Institute of Technology
    California Institute of Technology)

Abstract

Quantifying surface energy and carbon budgets is essential for projecting Earth’s climate. Earth System Models (ESMs) typically simulate land surface processes based on plant functional types (PFTs), neglecting the diversity of plant functional traits or characteristics (PFCs; e.g., chlorophyll content and leaf mass per area). Here, we demonstrate substantial differences in modeled leaf optical properties (LOP) and surface albedo between traditional PFT-based and PFC-based approaches, particularly in tropical and boreal forests. We configure the canopy radiative transfer scheme in the Community Earth System Model using PFC-based LOP. This new configuration produces lower shortwave surface albedo in the tropics but higher albedo in boreal regions (>5 W m−2 radiative flux differences), and a weaker tropical but stronger boreal carbon sink. Through land-atmosphere coupling, the PFC-based configuration further alters atmospheric processes, leading to different temperature, cloud cover, and precipitation patterns. Our findings highlight the need to move beyond traditional PFT-based approaches in ESMs.

Suggested Citation

  • Yujie Wang & Renato K. Braghiere & Woodward W. Fischer & Yitong Yao & Zhaoyi Shen & Tapio Schneider & A. Anthony Bloom & David Schimel & Holly Croft & Alexander J. Winkler & Markus Reichstein & Christ, 2025. "Impacts of leaf traits on vegetation optical properties in Earth system modeling," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60149-x
    DOI: 10.1038/s41467-025-60149-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60149-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60149-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sonia I. Seneviratne & Markus G. Donat & Brigitte Mueller & Lisa V. Alexander, 2014. "No pause in the increase of hot temperature extremes," Nature Climate Change, Nature, vol. 4(3), pages 161-163, March.
    2. E. M. Fischer & R. Knutti, 2015. "Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes," Nature Climate Change, Nature, vol. 5(6), pages 560-564, June.
    3. Ian J. Wright & Peter B. Reich & Mark Westoby & David D. Ackerly & Zdravko Baruch & Frans Bongers & Jeannine Cavender-Bares & Terry Chapin & Johannes H. C. Cornelissen & Matthias Diemer & Jaume Flexas, 2004. "The worldwide leaf economics spectrum," Nature, Nature, vol. 428(6985), pages 821-827, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    2. Nick Obradovich, 2017. "Climate change may speed democratic turnover," Climatic Change, Springer, vol. 140(2), pages 135-147, January.
    3. Thomas R. Knutson & Jeffrey J. Ploshay, 2016. "Detection of anthropogenic influence on a summertime heat stress index," Climatic Change, Springer, vol. 138(1), pages 25-39, September.
    4. Eric W. Seabloom & Maria C. Caldeira & Kendi F. Davies & Linda Kinkel & Johannes M. H. Knops & Kimberly J. Komatsu & Andrew S. MacDougall & Georgiana May & Michael Millican & Joslin L. Moore & Luis I., 2023. "Globally consistent response of plant microbiome diversity across hosts and continents to soil nutrients and herbivores," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Zoe E. Petropoulos & Oriana Ramirez-Rubio & Madeleine K. Scammell & Rebecca L. Laws & Damaris Lopez-Pilarte & Juan José Amador & Joan Ballester & Cristina O’Callaghan-Gordo & Daniel R. Brooks, 2021. "Climate Trends at a Hotspot of Chronic Kidney Disease of Unknown Causes in Nicaragua, 1973–2014," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    6. Yan Xin & Yongming Xu & Xudong Tong & Yaping Mo & Yonghong Liu & Shanyou Zhu, 2024. "Evaluating warming trend over the tibetan plateau based on remotely sensed air temperature from 2001 to 2020," Climatic Change, Springer, vol. 177(8), pages 1-18, August.
    7. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    8. Coderoni, Silvia & Pagliacci, Francesco, 2023. "The impact of climate change on land productivity. A micro-level assessment for Italian farms," Agricultural Systems, Elsevier, vol. 205(C).
    9. Shuangzhi Li & Xiaoling Zhang & Zhongci Deng & Xiaokang Liu & Ruoou Yang & Lihao Yin, 2023. "Identifying the Critical Supply Chains for Black Carbon and CO 2 in the Sichuan Urban Agglomeration of Southwest China," Sustainability, MDPI, vol. 15(21), pages 1-19, October.
    10. Greg Lusk, 2017. "The social utility of event attribution: liability, adaptation, and justice-based loss and damage," Climatic Change, Springer, vol. 143(1), pages 201-212, July.
    11. Fengchun Ye & Pinya Wang & Yang Yang & Lili Ren & Jianping Tang & Hong Liao, 2025. "Anthropogenic forcing dominates changes in compound long-duration dry and heat extremes in China," Climatic Change, Springer, vol. 178(2), pages 1-19, February.
    12. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    13. Eleonora Beccari & Carlos P. Carmona, 2024. "Aboveground and belowground sizes are aligned in the unified spectrum of plant form and function," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Huihui Ding & Wensheng Chen & Jiangrong Li & Fangwei Fu & Yueyao Li & Siying Xiao, 2023. "Physiological Characteristics and Cold Resistance of Five Woody Plants in Treeline Ecotone of Sygera Mountains," Sustainability, MDPI, vol. 15(4), pages 1-11, February.
    15. Jie Chen & Yujie Liu & Tao Pan & Philippe Ciais & Ting Ma & Yanhua Liu & Dai Yamazaki & Quansheng Ge & Josep Peñuelas, 2020. "Global socioeconomic exposure of heat extremes under climate change," Post-Print hal-02970803, HAL.
    16. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    17. Xing Zhang & Tianjun Zhou & Wenxia Zhang & Liwen Ren & Jie Jiang & Shuai Hu & Meng Zuo & Lixia Zhang & Wenmin Man, 2023. "Increased impact of heat domes on 2021-like heat extremes in North America under global warming," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Molly Anderson, 2015. "The role of knowledge in building food security resilience across food system domains," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(4), pages 543-559, December.
    19. Maria Wanic & Mariola Parzonka, 2023. "Assessing the Role of Crop Rotation in Shaping Foliage Characteristics and Leaf Gas Exchange Parameters for Winter Wheat," Agriculture, MDPI, vol. 13(5), pages 1-20, April.
    20. Daijun Liu & Adriane Esquivel-Muelbert & Nezha Acil & Julen Astigarraga & Emil Cienciala & Jonas Fridman & Georges Kunstler & Thomas J. Matthews & Paloma Ruiz-Benito & Jonathan P. Sadler & Mart-Jan Sc, 2024. "Mapping multi-dimensional variability in water stress strategies across temperate forests," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60149-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.