IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60327-x.html
   My bibliography  Save this article

Interspecies hydrogen transfer between cyanobacteria and symbiotic bacteria drives nitrogen loss

Author

Listed:
  • Lingrui Kong

    (Peking University
    Peking University)

  • Yiming Feng

    (Peking University
    Peking University)

  • Ru Zheng

    (Peking University
    Peking University)

  • Xiaogang Wu

    (Peking University
    Peking University)

  • Yimin Mao

    (Peking University
    Peking University)

  • Jingqi Sun

    (Peking University
    Peking University)

  • Sitong Liu

    (Peking University
    Peking University
    Eco-environment and Resource Efficiency Research Laboratory)

Abstract

The trace concentration of H2 in most ecosystems after the Earth’s oxidation has long caused the neglect of hydrogenotrophic denitrification for nitrogen loss. Here, we find that the interspecies hydrogen transfer between cyanobacteria and symbiotic bacteria within cyanobacterial aggregates is an undiscovered pathway for nitrogen loss. Cyanobacteria in aggregates can actively generate H2 under the diel cycle as an electron donor for neighboring hydrogenotrophic denitrifiers. The hydrogenotrophic denitrification in engineered cyanobacterial aggregates accounts for a nitrogen removal rate of 3.47 ± 0.42 mmol l−1 day−1. This value is nearly 50% of the heterotrophic denitrification rate, which far exceeds the general concept of the trace role. We find that H2-evolving cyanobacteria and hydrogenotrophic denitrifiers coexist in 84% of the 63 globally distributed cyanobacterial aggregates, where bloom colonies and phototrophic mats from hot springs are identified as potential hotspots. We suggest that interspecies hydrogen transfer within cyanobacterial aggregates is possibly responsible for the excessive nitrogen loss rate during cyanobacterial blooms where cyanobacterial aggregates persist.

Suggested Citation

  • Lingrui Kong & Yiming Feng & Ru Zheng & Xiaogang Wu & Yimin Mao & Jingqi Sun & Sitong Liu, 2025. "Interspecies hydrogen transfer between cyanobacteria and symbiotic bacteria drives nitrogen loss," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60327-x
    DOI: 10.1038/s41467-025-60327-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60327-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60327-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei-Lei Wang & J. Keith Moore & Adam C. Martiny & François W. Primeau, 2019. "Convergent estimates of marine nitrogen fixation," Nature, Nature, vol. 566(7743), pages 205-211, February.
    2. Jake J. Beaulieu & Tonya DelSontro & John A. Downing, 2019. "Eutrophication will increase methane emissions from lakes and impoundments during the 21st century," Nature Communications, Nature, vol. 10(1), pages 1-5, December.
    3. Feng Tong & Teng Wang & Na L. Gao & Ziying Liu & Kuiqing Cui & Yiqian Duan & Sicheng Wu & Yuhong Luo & Zhipeng Li & Chengjian Yang & Yixue Xu & Bo Lin & Liguo Yang & Alfredo Pauciullo & Deshun Shi & G, 2022. "The microbiome of the buffalo digestive tract," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Tori M. Hoehler & Brad M. Bebout & David J. Des Marais, 2001. "The role of microbial mats in the production of reduced gases on the early Earth," Nature, Nature, vol. 412(6844), pages 324-327, July.
    5. S. Emil Ruff & Pauline Humez & Isabella Hrabe Angelis & Muhe Diao & Michael Nightingale & Sara Cho & Liam Connors & Olukayode O. Kuloyo & Alan Seltzer & Samuel Bowman & Scott D. Wankel & Cynthia N. Mc, 2023. "Hydrogen and dark oxygen drive microbial productivity in diverse groundwater ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Peter Menzel & Kim Lee Ng & Anders Krogh, 2016. "Fast and sensitive taxonomic classification for metagenomics with Kaiju," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beaulieu, Jake & Kopits, Elizabeth & Moore, Chris C. & Parthum, Bryan M., 2024. "The Climate Benefits of Improving Water Quality," National Center for Environmental Economics-NCEE Working Papers 348911, United States Environmental Protection Agency (EPA).
    2. Amanda Sörensen Ristinmaa & Albert Tafur Rangel & Alexander Idström & Sebastian Valenzuela & Eduard J. Kerkhoven & Phillip B. Pope & Merima Hasani & Johan Larsbrink, 2023. "Resin acids play key roles in shaping microbial communities during degradation of spruce bark," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Dutta, Arup & Barbora, Lepakshi & Stom, Devard & Goswami, Pranab, 2025. "Improving power performance of sediment microbial fuel cell through Water lettuce (Pistia stratiotes) assisted boosting of cathodic activity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    4. Kuwayama, Yusuke & Olmstead, Sheila & Zheng, Jiameng, 2022. "A more comprehensive estimate of the value of water quality," Journal of Public Economics, Elsevier, vol. 207(C).
    5. Amanda C. Patsis & Christopher J. Schuler & Brandy M. Toner & Cara M. Santelli & Cody S. Sheik, 2025. "The potential for coupled organic and inorganic sulfur cycles across the terrestrial deep subsurface biosphere," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    6. Qiuyun Jiang & Lei Cao & Yingchun Han & Shengjie Li & Rui Zhao & Xiaoli Zhang & S. Emil Ruff & Zhuoming Zhao & Jiaxue Peng & Jing Liao & Baoli Zhu & Minxiao Wang & Xianbiao Lin & Xiyang Dong, 2025. "Cold seeps are potential hotspots of deep-sea nitrogen loss driven by microorganisms across 21 phyla," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    7. Lharbi Dridi & Fernando Altamura & Emmanuel Gonzalez & Olivia Lui & Ryszard Kubinski & Reilly Pidgeon & Adrian Montagut & Jasmine Chong & Jianguo Xia & Corinne F. Maurice & Bastien Castagner, 2023. "Identifying glycan consumers in human gut microbiota samples using metabolic labeling coupled with fluorescence-activated cell sorting," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Jager, Henriette I. & Griffiths, Natalie A. & Hansen, Carly H. & King, Anthony W. & Matson, Paul G. & Singh, Debjani & Pilla, Rachel M., 2022. "Getting lost tracking the carbon footprint of hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Eduardo Rebolledo Monsalve & Lita Verduga & Felipe Hurtado Ferreira, 2024. "Wetland Ecosystem Service Preservation? Geochemical Changes in Systems with Mangroves and Shrimp Farms in the Northern Ecuadorean Coast," Sustainability, MDPI, vol. 16(24), pages 1-21, December.
    10. Mason. R. Stothart & Philip. D. McLoughlin & Sarah. A. Medill & Ruth. J. Greuel & Alastair. J. Wilson & Jocelyn. Poissant, 2024. "Methanogenic patterns in the gut microbiome are associated with survival in a population of feral horses," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Zheng Sun & Jiang Liu & Meng Zhang & Tong Wang & Shi Huang & Scott T. Weiss & Yang-Yu Liu, 2023. "Removal of false positives in metagenomics-based taxonomy profiling via targeting Type IIB restriction sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Marc Schoeler & Sandrine Ellero-Simatos & Till Birkner & Jordi Mayneris-Perxachs & Lisa Olsson & Harald Brolin & Ulrike Loeber & Jamie D. Kraft & Arnaud Polizzi & Marian Martí-Navas & Josep Puig & Ant, 2023. "The interplay between dietary fatty acids and gut microbiota influences host metabolism and hepatic steatosis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Benedikt Ehrenfels & Kathrin B. L. Baumann & Robert Niederdorfer & Athanasio S. Mbonde & Ismael A. Kimirei & Thomas Kuhn & Paul M. Magyar & Daniel Odermatt & Carsten J. Schubert & Helmut Bürgmann & Mo, 2023. "Hydrodynamic regimes modulate nitrogen fixation and the mode of diazotrophy in Lake Tanganyika," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Harold P. Hodgins & Pengsheng Chen & Briallen Lobb & Xin Wei & Benjamin J. M. Tremblay & Michael J. Mansfield & Victoria C. Y. Lee & Pyung-Gang Lee & Jeffrey Coffin & Ana T. Duggan & Alexis E. Dolphin, 2023. "Ancient Clostridium DNA and variants of tetanus neurotoxins associated with human archaeological remains," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Cong Wang & Qing-Yi Yu & Niu-Niu Ji & Yong Zheng & John W. Taylor & Liang-Dong Guo & Cheng Gao, 2023. "Bacterial genome size and gene functional diversity negatively correlate with taxonomic diversity along a pH gradient," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Daniel R. Colman & Lisa M. Keller & Emilia Arteaga-Pozo & Eva Andrade-Barahona & Brian Clair & Anna Shoemaker & Alysia Cox & Eric S. Boyd, 2024. "Covariation of hot spring geochemistry with microbial genomic diversity, function, and evolution," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    17. Prakriti Bista & Mohamed Eisa & Dovilė Ragauskaitė & Sundar Sapkota & Jonas Baltrusaitis & Rajan Ghimire, 2023. "Effect of Urea-Calcium Sulfate Cocrystal Nitrogen Fertilizer on Sorghum Productivity and Soil N 2 O Emissions," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    18. Samuel Imisi Awala & Joo-Han Gwak & Yongman Kim & Man-Young Jung & Peter F. Dunfield & Michael Wagner & Sung-Keun Rhee, 2024. "Nitrous oxide respiration in acidophilic methanotrophs," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    19. Wenjie Pan & Xuan Wang & Chunhua Ren & Xiao Jiang & Sanqiang Gong & Zhenyu Xie & Nai-Kei Wong & Xiaomin Li & Jiasheng Huang & Dingding Fan & Peng Luo & Yun Yang & Xinyue Ren & Suzhong Yu & Zhou Qin & , 2024. "Sea cucumbers and their symbiotic microbiome have evolved to feed on seabed sediments," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Jiandui Mi & Xiaoping Jing & Chouxian Ma & Fuyu Shi & Ze Cao & Xin Yang & Yiwen Yang & Apurva Kakade & Weiwei Wang & Ruijun Long, 2024. "A metagenomic catalogue of the ruminant gut archaeome," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60327-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.