IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56774-1.html
   My bibliography  Save this article

Cold seeps are potential hotspots of deep-sea nitrogen loss driven by microorganisms across 21 phyla

Author

Listed:
  • Qiuyun Jiang

    (Ministry of Natural Resources
    Qingdao Marine Science and Technology Center)

  • Lei Cao

    (Chinese Academy of Sciences)

  • Yingchun Han

    (Ministry of Natural Resources)

  • Shengjie Li

    (Max Planck Institute for Marine Microbiology)

  • Rui Zhao

    (Cambridge)

  • Xiaoli Zhang

    (Chinese Academy of Sciences)

  • S. Emil Ruff

    (Marine Biological Laboratory)

  • Zhuoming Zhao

    (Ministry of Natural Resources)

  • Jiaxue Peng

    (Ministry of Natural Resources
    Dalian Maritime University)

  • Jing Liao

    (Ministry of Natural Resources)

  • Baoli Zhu

    (Chinese Academy of Sciences)

  • Minxiao Wang

    (Chinese Academy of Sciences)

  • Xianbiao Lin

    (Ocean University of China)

  • Xiyang Dong

    (Ministry of Natural Resources
    Qingdao Marine Science and Technology Center)

Abstract

Nitrogen bioavailability, governed by fixation and loss processes, is crucial for oceanic productivity and global biogeochemical cycles. The key nitrogen loss organisms—denitrifiers and anaerobic ammonium-oxidizing (anammox) bacteria—remain poorly understood in deep-sea cold seeps. This study combined geochemical measurements, 15N stable isotope tracer analysis, metagenomics, metatranscriptomics, and three-dimensional protein structural simulations to explore cold-seeps nitrogen loss processes. Geochemical evidence from 359 sediment samples shows significantly higher nitrogen loss rates in cold seeps compared to typical deep-sea sediments, with nitrogen loss flux from surface sediments estimated at 4.96–7.63 Tg N yr-1 (1.65–2.54% of global marine sediment). Examination of 147 million non-redundant genes indicates a high prevalence of nitrogen loss genes, including nitrous-oxide reductase (NosZ; 6.88 genes per million reads, GPM), nitric oxide dismutase (Nod; 1.29 GPM), and hydrazine synthase (HzsA; 3.35 GPM) in surface sediments. Analysis of 3,164 metagenome-assembled genomes expands the nitrous-oxide reducers by three phyla, nitric oxide-dismutating organisms by one phylum and two orders, and anammox bacteria by ten phyla going beyond Planctomycetota. These microbes exhibit structural adaptations and complex gene cluster enabling survival in cold seeps. Cold seeps likely are previously underestimated nitrogen loss hotspots, potentially contributing notably to the global nitrogen cycle.

Suggested Citation

  • Qiuyun Jiang & Lei Cao & Yingchun Han & Shengjie Li & Rui Zhao & Xiaoli Zhang & S. Emil Ruff & Zhuoming Zhao & Jiaxue Peng & Jing Liao & Baoli Zhu & Minxiao Wang & Xianbiao Lin & Xiyang Dong, 2025. "Cold seeps are potential hotspots of deep-sea nitrogen loss driven by microorganisms across 21 phyla," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56774-1
    DOI: 10.1038/s41467-025-56774-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56774-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56774-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marc Strous & Eric Pelletier & Sophie Mangenot & Thomas Rattei & Angelika Lehner & Michael W. Taylor & Matthias Horn & Holger Daims & Delphine Bartol-Mavel & Patrick Wincker & Valérie Barbe & Nuria Fo, 2006. "Deciphering the evolution and metabolism of an anammox bacterium from a community genome," Nature, Nature, vol. 440(7085), pages 790-794, April.
    2. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    3. Xiyang Dong & Chuwen Zhang & Yongyi Peng & Hong-Xi Zhang & Ling-Dong Shi & Guangshan Wei & Casey R. J. Hubert & Yong Wang & Chris Greening, 2022. "Phylogenetically and catabolically diverse diazotrophs reside in deep-sea cold seep sediments," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Andreas Dietl & Christina Ferousi & Wouter J. Maalcke & Andreas Menzel & Simon de Vries & Jan T. Keltjens & Mike S. M. Jetten & Boran Kartal & Thomas R. M. Barends, 2015. "The inner workings of the hydrazine synthase multiprotein complex," Nature, Nature, vol. 527(7578), pages 394-397, November.
    5. N. D. McTigue & W. S. Gardner & K. H. Dunton & A. K. Hardison, 2016. "Biotic and abiotic controls on co-occurring nitrogen cycling processes in shallow Arctic shelf sediments," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
    6. S. Emil Ruff & Pauline Humez & Isabella Hrabe Angelis & Muhe Diao & Michael Nightingale & Sara Cho & Liam Connors & Olukayode O. Kuloyo & Alan Seltzer & Samuel Bowman & Scott D. Wankel & Cynthia N. Mc, 2023. "Hydrogen and dark oxygen drive microbial productivity in diverse groundwater ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Katharina F. Ettwig & Margaret K. Butler & Denis Le Paslier & Eric Pelletier & Sophie Mangenot & Marcel M. M. Kuypers & Frank Schreiber & Bas E. Dutilh & Johannes Zedelius & Dirk de Beer & Jolein Gloe, 2010. "Nitrite-driven anaerobic methane oxidation by oxygenic bacteria," Nature, Nature, vol. 464(7288), pages 543-548, March.
    8. Stephen Nayfach & Zhou Jason Shi & Rekha Seshadri & Katherine S. Pollard & Nikos C. Kyrpides, 2019. "New insights from uncultivated genomes of the global human gut microbiome," Nature, Nature, vol. 568(7753), pages 505-510, April.
    9. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    10. Christopher M. Jones & Ayme Spor & Fiona P. Brennan & Marie-Christine Breuil & David Bru & Philippe Lemanceau & Bryan Griffiths & Sara Hallin & Laurent Philippot, 2014. "Recently identified microbial guild mediates soil N2O sink capacity," Nature Climate Change, Nature, vol. 4(9), pages 801-805, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Pantelis Livanos & Choy Kriechbaum & Sophia Remers & Arvid Herrmann & Sabine Müller, 2025. "Kinesin-12 POK2 polarization is a prerequisite for a fully functional division site and aids cell plate positioning," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    4. Surabhi Kokane & Ashutosh Gulati & Pascal F. Meier & Rei Matsuoka & Tanadet Pipatpolkai & Giuseppe Albano & Tin Manh Ho & Lucie Delemotte & Daniel Fuster & David Drew, 2025. "PIP2-mediated oligomerization of the endosomal sodium/proton exchanger NHE9," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    5. Justin Riper & Arleth O. Martinez-Claros & Lie Wang & Hannah E. Schneiderman & Sweta Maheshwari & Monica C. Pillon, 2025. "CryoEM structure of the SLFN14 endoribonuclease reveals insight into RNA binding and cleavage," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    6. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative Artificial Intelligence," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, pages 7-46, National Bureau of Economic Research, Inc.
    8. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Xin Yong & Guowen Jia & Qin Yang & Chunzhuang Zhou & Sitao Zhang & Huaqing Deng & Daniel D. Billadeau & Zhaoming Su & Da Jia, 2025. "Cryo-EM structure of the BLOC-3 complex provides insights into the pathogenesis of Hermansky-Pudlak syndrome," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    11. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Ahrum Son & Hyunsoo Kim & Jolene K. Diedrich & Casimir Bamberger & Daniel B. McClatchy & Stuart A. Lipton & John R. Yates, 2024. "Using in vivo intact structure for system-wide quantitative analysis of changes in proteins," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Weizhu Huang & Nan Jin & Jia Guo & Cangsong Shen & Chanjuan Xu & Kun Xi & Léo Bonhomme & Robert B. Quast & Dan-Dan Shen & Jiao Qin & Yi-Ru Liu & Yuxuan Song & Yang Gao & Emmanuel Margeat & Philippe Ro, 2024. "Structural basis of orientated asymmetry in a mGlu heterodimer," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Yue Pang & Yating Qin & Zeyu Du & Qun Liu & Jin Zhang & Kai Han & Jiali Lu & Zengbao Yuan & Jun Li & Shanshan Pan & Xinrui Dong & Mengyang Xu & Dantong Wang & Shuo Li & Zhen Li & Yadong Chen & Zhishen, 2025. "Single-cell transcriptome atlas of lamprey exploring Natterin- induced white adipose tissue browning," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    19. Eliza S. Nieweglowska & Axel F. Brilot & Melissa Méndez-Moran & Claire Kokontis & Minkyung Baek & Junrui Li & Yifan Cheng & David Baker & Joseph Bondy-Denomy & David A. Agard, 2023. "The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Zhao-Shan Chen & Hsiang-Chi Huang & Xiangkun Wang & Karin Schön & Yane Jia & Michael Lebens & Danica F. Besavilla & Janarthan R. Murti & Yanhong Ji & Aishe A. Sarshad & Guohua Deng & Qiyun Zhu & David, 2025. "Influenza A Virus H7 nanobody recognizes a conserved immunodominant epitope on hemagglutinin head and confers heterosubtypic protection," Nature Communications, Nature, vol. 16(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56774-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.