BIT: Bayesian Identification of Transcriptional regulators from epigenomics-based query region sets
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-025-60269-4
Download full text from publisher
References listed on IDEAS
- David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
- Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
- Mi Ran Kim & Meng-Ju Wu & Yingsheng Zhang & Jer-Yen Yang & Chun Ju Chang, 2020. "TET2 directs mammary luminal cell differentiation and endocrine response," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
- Andrew J. King & Duantida Songdej & Damien J. Downes & Robert A. Beagrie & Siyu Liu & Megan Buckley & Peng Hua & Maria C. Suciu & A. Marieke Oudelaar & Lars L. P. Hanssen & Danuta Jeziorska & Nigel Ro, 2021. "Reactivation of a developmentally silenced embryonic globin gene," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
- Juanjuan Zhang & Weixian Wang & Mingming Yang & Maozai Tian, 2025. "Variational Bayesian Variable Selection in Logistic Regression Based on Spike-and-Slab Lasso," Mathematics, MDPI, vol. 13(13), pages 1-18, July.
- Yemao Xia & Jinye Chen & Depeng Jiang, 2024. "Variational Bayesian analysis for two-part latent variable model," Computational Statistics, Springer, vol. 39(4), pages 2259-2290, June.
- Zhang, Chun-Xia & Xu, Shuang & Zhang, Jiang-She, 2019. "A novel variational Bayesian method for variable selection in logistic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 1-19.
- Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
- Niko Hauzenberger & Florian Huber, 2020.
"Model instability in predictive exchange rate regressions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
- Niko Hauzenberger & Florian Huber, 2018. "Model instability in predictive exchange rate regressions," Working Papers in Economics 2018-8, University of Salzburg.
- Hauzenberger, Niko & Huber, Florian, 2018. "Model instability in predictive exchange rate regressions," Department of Economics Working Paper Series 276, WU Vienna University of Economics and Business.
- Niko Hauzenberger & Florian Huber, 2018. "Model instability in predictive exchange rate regressions," Department of Economics Working Papers wuwp276, Vienna University of Economics and Business, Department of Economics.
- Niko Hauzenberger & Florian Huber, 2018. "Model instability in predictive exchange rate regressions," Papers 1811.08818, arXiv.org, revised Dec 2018.
- Anindya Bhadra & Arvind Rao & Veerabhadran Baladandayuthapani, 2018. "Inferring network structure in non†normal and mixed discrete†continuous genomic data," Biometrics, The International Biometric Society, vol. 74(1), pages 185-195, March.
- Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
- Shen Liu & Hongyan Liu, 2021. "Tagging Items Automatically Based on Both Content Information and Browsing Behaviors," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 882-897, July.
- Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022.
"Fast and accurate variational inference for models with many latent variables,"
Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
- Rub'en Loaiza-Maya & Michael Stanley Smith & David J. Nott & Peter J. Danaher, 2020. "Fast and Accurate Variational Inference for Models with Many Latent Variables," Papers 2005.07430, arXiv.org, revised Apr 2021.
- Luo, Nanyu & Ji, Feng & Han, Yuting & He, Jinbo & Zhang, Xiaoya, 2024. "Fitting item response theory models using deep learning computational frameworks," OSF Preprints tjxab, Center for Open Science.
- Xing Qin & Shuangge Ma & Mengyun Wu, 2023. "Two‐level Bayesian interaction analysis for survival data incorporating pathway information," Biometrics, The International Biometric Society, vol. 79(3), pages 1761-1774, September.
- Youngseon Lee & Seongil Jo & Jaeyong Lee, 2022. "A variational inference for the Lévy adaptive regression with multiple kernels," Computational Statistics, Springer, vol. 37(5), pages 2493-2515, November.
- Liu, Jie & Ye, Zifeng & Chen, Kun & Zhang, Panpan, 2024. "Variational Bayesian inference for bipartite mixed-membership stochastic block model with applications to collaborative filtering," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
- Nathaniel Tomasetti & Catherine Forbes & Anastasios Panagiotelis, 2019.
"Updating Variational Bayes: Fast Sequential Posterior Inference,"
Monash Econometrics and Business Statistics Working Papers
13/19, Monash University, Department of Econometrics and Business Statistics.
- Nathaniel Tomasetti & Catherine Forbes & Anastasios Panagiotelis, 2020. "Updating Variational Bayes: Fast Sequential Posterior Inference," Monash Econometrics and Business Statistics Working Papers 27/20, Monash University, Department of Econometrics and Business Statistics.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
- Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Ho, Paul, 2023.
"Global robust Bayesian analysis in large models,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 608-642.
- Paul Ho, 2019. "Global Robust Bayesian Analysis in Large Models," 2019 Meeting Papers 390, Society for Economic Dynamics.
- Paul Ho, 2020. "Global Robust Bayesian Analysis in Large Models," Working Paper 20-07, Federal Reserve Bank of Richmond.
- Samyajoy Pal & Christian Heumann, 2025. "Revisiting Dirichlet Mixture Model: unraveling deeper insights and practical applications," Statistical Papers, Springer, vol. 66(1), pages 1-38, January.
- Matthew W. Wheeler, 2019. "Bayesian additive adaptive basis tensor product models for modeling high dimensional surfaces: an application to high‐throughput toxicity testing," Biometrics, The International Biometric Society, vol. 75(1), pages 193-201, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60269-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.