IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59974-x.html
   My bibliography  Save this article

Two major ecological shifts shaped 60 million years of ungulate faunal evolution

Author

Listed:
  • Fernando Blanco

    (University of Gothenburg, Medicinaregatan 7B
    Gothenburg Global Biodiversity Centre
    Leibniz Institute for Evolution and Biodiversity Science)

  • Ignacio A. Lazagabaster

    (Leibniz Institute for Evolution and Biodiversity Science
    Paseo Sierra de Atapuerca 3
    University of Liverpool)

  • Óscar Sanisidro

    (Universidad de Alcalá, GloCEE)

  • Faysal Bibi

    (Leibniz Institute for Evolution and Biodiversity Science)

  • Nicola S. Heckeberg

    (Ludwig-Maximilians-Universität München
    Ludwig-Maximilians-Universität München)

  • María Ríos

    (Universidade NOVA de Lisboa, Campus de Caparica
    Museu da Lourinhã, R. João Luís Moura)

  • Bastien Mennecart

    (Naturhistorisches Museum Basel)

  • María Teresa Alberdi

    (Museo Nacional de Ciencias Naturales (CSIC))

  • Jose Luis Prado

    (Universidad Nacional del Centro de la Provincia de Buenos Aires. Del Valle)

  • Juha Saarinen

    (University of Helsinki)

  • Daniele Silvestro

    (University of Gothenburg, Medicinaregatan 7B
    Gothenburg Global Biodiversity Centre
    ETH)

  • Johannes Müller

    (Leibniz Institute for Evolution and Biodiversity Science)

  • Joaquín Calatayud

    (Calle Tulipán s/n
    Rey Juan Carlos University)

  • Juan L. Cantalapiedra

    (Leibniz Institute for Evolution and Biodiversity Science
    Universidad de Alcalá, GloCEE
    Museo Nacional de Ciencias Naturales (CSIC))

Abstract

The fossil record provides direct evidence for the behavior of biological systems over millions of years, offering a vital source for studying how ecosystems evolved and responded to major environmental changes. Using network analysis on a dataset of over 3000 fossil species spanning the past 60 Myr, we find that ungulate continental assemblages exhibit prolonged ecological stability interrupted by irreversible reorganizations associated with abiotic events. During the early Cenozoic, continental assemblages are dominated by mid-sized browsers with low-crowned teeth, which show increasing functional diversity. Around 21 Ma, the formation of a land bridge between Eurasia and Africa triggers the first major global transition towards a new functional system featuring a prevalence of large browsers with mid- to high-crowned molars. Functional diversity continues to increase, peaking around 10 Ma. Shortly after, aridification and the spread of C4-dominated vegetation lead to a second tipping point towards a fauna characterized by grazers and browsers with high and low crowned teeth. A global decline in ungulate functional diversity begins 10 Ma ago and accelerates around 2.5 Ma, yet the functional structure of these faunas remains stable in the latest Cenozoic. Large mammal evolutionary history reflects two key transitions, aligning with major tectonic and climatic events.

Suggested Citation

  • Fernando Blanco & Ignacio A. Lazagabaster & Óscar Sanisidro & Faysal Bibi & Nicola S. Heckeberg & María Ríos & Bastien Mennecart & María Teresa Alberdi & Jose Luis Prado & Juha Saarinen & Daniele Silv, 2025. "Two major ecological shifts shaped 60 million years of ungulate faunal evolution," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59974-x
    DOI: 10.1038/s41467-025-59974-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59974-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59974-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher H. Trisos & Cory Merow & Alex L. Pigot, 2020. "The projected timing of abrupt ecological disruption from climate change," Nature, Nature, vol. 580(7804), pages 496-501, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Paolinelli & Marco Cei & Nicoletta Cristiani & Ludovica Marinaro & Flavia Veronesi, 2022. "Don’t Split Them Up! Landscape Design of Multifunctional Open Spaces Suitable for Coping with Flash Floods and River Floods," Sustainability, MDPI, vol. 14(4), pages 1-16, February.
    2. Hametner, Markus, 2022. "Economics without ecology: How the SDGs fail to align socioeconomic development with environmental sustainability," Ecological Economics, Elsevier, vol. 199(C).
    3. Yuliya G. Leskova & Irina K. Kuzmina & Tahir E. Rakhmatullin & Natalia V. Dzhagaryan & Denis A. Popyrkin & Vera N. Kolodkina, 2020. "Economic and Legal Aspects for Construction Business to Ensure Environmental Safety by Self-Regulating Organizations: The Case of Russia," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(4), pages 20-29.
    4. Beverly E. Law & William R. Moomaw & Tara W. Hudiburg & William H. Schlesinger & John D. Sterman & George M. Woodwell, 2022. "Creating Strategic Reserves to Protect Forest Carbon and Reduce Biodiversity Losses in the United States," Land, MDPI, vol. 11(5), pages 1-15, May.
    5. Holli-Anne Passmore & Ashley N. Krause, 2023. "The Beyond-Human Natural World: Providing Meaning and Making Meaning," IJERPH, MDPI, vol. 20(12), pages 1-14, June.
    6. Coline C. F. Boonman & Josep M. Serra-Diaz & Selwyn Hoeks & Wen-Yong Guo & Brian J. Enquist & Brian Maitner & Yadvinder Malhi & Cory Merow & Robert Buitenwerf & Jens-Christian Svenning, 2024. "More than 17,000 tree species are at risk from rapid global change," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Méjean, Aurélie & Pottier, Antonin & Zuber, Stéphane & Fleurbaey, Marc, 2023. "Opposite ethical views converge under the threat of catastrophic climate change," Ecological Economics, Elsevier, vol. 212(C).
    8. Sandra Garcés-Pastor & Eric Coissac & Sébastien Lavergne & Christoph Schwörer & Jean-Paul Theurillat & Peter D. Heintzman & Owen S. Wangensteen & Willy Tinner & Fabian Rey & Martina Heer & Astrid Rutz, 2022. "High resolution ancient sedimentary DNA shows that alpine plant diversity is associated with human land use and climate change," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Dong, Ruoyu & Fu, Cong & Liu, Yan & Xu, Yanqing & Li, Kenan, 2025. "Modeling China's carbon emission reduction trajectory and peak path using a system dynamic approach," Ecological Modelling, Elsevier, vol. 505(C).
    10. Luca Rindi & Jianyu He & Mara Miculan & Matteo Dell’Acqua & Mario Enrico Pè & Lisandro Benedetti-Cecchi, 2025. "Legacies of temperature fluctuations promote stability in marine biofilm communities," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    11. Giuliana Vinci & Lucia Maddaloni & Sabrina Antonia Prencipe & Marco Ruggeri & Maria Vittoria Di Loreto, 2022. "A Comparison of the Mediterranean Diet and Current Food Patterns in Italy: A Life Cycle Thinking Approach for a Sustainable Consumption," IJERPH, MDPI, vol. 19(19), pages 1-14, September.
    12. Shanglei Chai & Zixuan Zhang & Zhen Zhang, 2025. "Carbon price prediction for China's ETS pilots using variational mode decomposition and optimized extreme learning machine," Annals of Operations Research, Springer, vol. 345(2), pages 809-830, February.
    13. Maolin Li & Yongxun Zhang & Changhong Miao & Lulu He & Jiatao Chen, 2022. "Centennial Change and Source–Sink Interaction Process of Traditional Agricultural Landscape: Case from Xin’an Traditional Cherry Cultivation System (1920–2020)," Land, MDPI, vol. 11(10), pages 1-22, October.
    14. Bingyi Wang & Yufei Zhang & Hanlong Gu & Zhenxing Bian, 2025. "Ecological Security Patterns Based on Ecosystem Service Assessment and Circuit Theory: A Case Study of Liaoning Province, China," Land, MDPI, vol. 14(6), pages 1-23, June.
    15. Daijun Liu & Philipp Semenchuk & Franz Essl & Bernd Lenzner & Dietmar Moser & Tim M. Blackburn & Phillip Cassey & Dino Biancolini & César Capinha & Wayne Dawson & Ellie E. Dyer & Benoit Guénard & Evan, 2023. "The impact of land use on non-native species incidence and number in local assemblages worldwide," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Chen, Jiandong & Xu, Chong & Huang, Shuo & Shen, Zhiyang & Song, Malin & Wang, Shiqi, 2022. "Adjusted carbon intensity in China: Trend, driver, and network," Energy, Elsevier, vol. 251(C).
    17. Kate Dooley & Kirstine Lund Christiansen & Jens Friis Lund & Wim Carton & Alister Self, 2024. "Over-reliance on land for carbon dioxide removal in net-zero climate pledges," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Meiling Yin & Hanna Choi & Eun-Ju Lee, 2022. "Can Climate Change Awaken Ecological Consciousness? A Neuroethical Approach to Green Consumption," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    19. Yanqing Xu & Yan Liu & Ruidun Chen & Yifei Meng & Kenan Li & Cong Fu, 2023. "Study on the spatio-temporal evolution characteristics and driving mechanism of China’s carbon emissions," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    20. Li, Ye & Chen, Yiyan, 2021. "Development of an SBM-ML model for the measurement of green total factor productivity: The case of pearl river delta urban agglomeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59974-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.