IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59527-2.html
   My bibliography  Save this article

Highly efficient light-emitting diodes via self-assembled InP quantum dots

Author

Listed:
  • Hui Li

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Jingyuan Zhang

    (Shanxi Datong University)

  • Wen Wen

    (University of Science and Technology of China)

  • Yuyan Zhao

    (University of Science and Technology of China)

  • Hanfei Gao

    (University of Science and Technology of China)

  • Bingqiang Ji

    (Beihang University)

  • Yunjun Wang

    (Ltd. (Mesolight))

  • Lei Jiang

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Yuchen Wu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences (UCAS))

Abstract

Heavy-metal-free quantum dot light-emitting diodes (QLEDs) face commercialization challenges due to low efficiency and poor stability. Spin-coated quantum dot films often create charge leakage areas, limiting device performance. Here, we develop an evaporative-driven self-assembly strategy that enables the preparation of uniform and dense InP-based quantum dot films. During device operation, these films effectively suppress performance degradation caused by charge leakage. QLEDs with uniform and dense InP-based quantum dot films achieve high external quantum efficiency (26.6%) and luminance (1.4 × 105 cd m−2), along with considerable stability (extrapolated T50 lifetime of 4026 hours at 1000 cd m−2). For a 2 × 3 cm2 InP-based device, the peak external quantum efficiency reaches 21.1%. By combining high-performance QLEDs with lithography technology, we fabricate miniaturized QLEDs with a minimum pixel size of 3 μm, achieving a resolution as high as 5080 pixels per inch and a peak external quantum efficiency of 22.6%.

Suggested Citation

  • Hui Li & Jingyuan Zhang & Wen Wen & Yuyan Zhao & Hanfei Gao & Bingqiang Ji & Yunjun Wang & Lei Jiang & Yuchen Wu, 2025. "Highly efficient light-emitting diodes via self-assembled InP quantum dots," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59527-2
    DOI: 10.1038/s41467-025-59527-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59527-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59527-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenjing Zhang & Bo Li & Chun Chang & Fei Chen & Qin Zhang & Qingli Lin & Lei Wang & Jinhang Yan & Fangfang Wang & Yihua Chong & Zuliang Du & Fengjia Fan & Huaibin Shen, 2024. "Stable and efficient pure blue quantum-dot LEDs enabled by inserting an anti-oxidation layer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Robert D. Deegan & Olgica Bakajin & Todd F. Dupont & Greb Huber & Sidney R. Nagel & Thomas A. Witten, 1997. "Capillary flow as the cause of ring stains from dried liquid drops," Nature, Nature, vol. 389(6653), pages 827-829, October.
    3. Yangyang Bian & Xiaohan Yan & Fei Chen & Qian Li & Bo Li & Wenjun Hou & Zizhe Lu & Shuaibing Wang & Han Zhang & Wenjing Zhang & Dandan Zhang & Aiwei Tang & Fengjia Fan & Huaibin Shen, 2024. "Efficient green InP-based QD-LED by controlling electron injection and leakage," Nature, Nature, vol. 635(8040), pages 854-859, November.
    4. Qianqian Wu & Fan Cao & Wenke Yu & Sheng Wang & Wenjun Hou & Zizhe Lu & Weiran Cao & Jiaqi Zhang & Xiaoyu Zhang & Yingguo Yang & Guohua Jia & Jianhua Zhang & Xuyong Yang, 2025. "Homogeneous ZnSeTeS quantum dots for efficient and stable pure-blue LEDs," Nature, Nature, vol. 639(8055), pages 633-638, March.
    5. Xingtong Chen & Xiongfeng Lin & Likuan Zhou & Xiaojuan Sun & Rui Li & Mengyu Chen & Yixing Yang & Wenjun Hou & Longjia Wu & Weiran Cao & Xin Zhang & Xiaolin Yan & Song Chen, 2023. "Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Yu-Ho Won & Oul Cho & Taehyung Kim & Dae-Young Chung & Taehee Kim & Heejae Chung & Hyosook Jang & Junho Lee & Dongho Kim & Eunjoo Jang, 2019. "Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes," Nature, Nature, vol. 575(7784), pages 634-638, November.
    7. Hossein Zargartalebi & S. Hossein Hejazi & Amir Sanati-Nezhad, 2022. "Self-assembly of highly ordered micro- and nanoparticle deposits," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Mengqi Li & Rui Li & Longjia Wu & Xiongfeng Lin & Xueqing Xia & Zitong Ao & Xiaojuan Sun & Xingtong Chen & Song Chen, 2024. "Ultrabright and stable top-emitting quantum-dot light-emitting diodes with negligible angular color shift," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiang Su & Zinan Chen & Shuming Chen, 2024. "Tracing the electron transport behavior in quantum-dot light-emitting diodes via single photon counting technique," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Wenjing Zhang & Bo Li & Chun Chang & Fei Chen & Qin Zhang & Qingli Lin & Lei Wang & Jinhang Yan & Fangfang Wang & Yihua Chong & Zuliang Du & Fengjia Fan & Huaibin Shen, 2024. "Stable and efficient pure blue quantum-dot LEDs enabled by inserting an anti-oxidation layer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Yizhen Zheng & Xing Lin & Jiongzhao Li & Jianan Chen & Wenhao Wu & Zixuan Song & Yuan Gao & Zhuang Hu & Huifeng Wang & Zikang Ye & Haiyan Qin & Xiaogang Peng, 2025. "In situ n-doped nanocrystalline electron-injection-layer for general-lighting quantum-dot LEDs," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    4. Sergey Misyura & Andrey Semenov & Yulia Peschenyuk & Ivan Vozhakov & Vladimir Morozov, 2023. "Nonisothermal Evaporation of Sessile Drops of Aqueous Solutions with Surfactant," Energies, MDPI, vol. 16(2), pages 1-21, January.
    5. Hongjoo Shin & Doosun Hong & Hyunjin Cho & Hanhwi Jang & Geon Yeong Kim & Kyeong Min Song & Min-Jae Choi & Donghun Kim & Yeon Sik Jung, 2024. "Indirect-to-direct bandgap transition in GaP semiconductors through quantum shell formation on ZnS nanocrystals," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Mengqi Li & Rui Li & Longjia Wu & Xiongfeng Lin & Xueqing Xia & Zitong Ao & Xiaojuan Sun & Xingtong Chen & Song Chen, 2024. "Ultrabright and stable top-emitting quantum-dot light-emitting diodes with negligible angular color shift," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Jiawei Chen & Kangyu Ji & Linjie Dai & Hengyang Xiang & Zhongzheng Yu & Affan N. Iqbal & Jian Wang & Xingyue Ma & Renjun Guo & Miguel Anaya & Xiufeng Song & Yang Lu & Yu-Hsien Chiang & Weijin Li & Yal, 2025. "Nanoscale heterophase regulation enables sunlight-like full-spectrum white electroluminescence," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    8. Zezhou Li & Zhiheng Xie & Yao Zhang & Xilong Mu & Jisheng Xie & Hai-Jing Yin & Ya-Wen Zhang & Colin Ophus & Jihan Zhou, 2023. "Probing the atomically diffuse interfaces in Pd@Pt core-shell nanoparticles in three dimensions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Fanny Thorimbert & Mateusz Odziomek & Denis Chateau & Stéphane Parola & Marco Faustini, 2024. "Programming crack patterns with light in colloidal plasmonic films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Xiaodong Zhang & Yugang Zhao & Dongmin Wang, 2023. "Characterization of the Temperature Profile near Contact Lines of an Evaporating Sessile Drop," Energies, MDPI, vol. 16(6), pages 1-12, March.
    11. Yuhe Bi & Jianhui Sun & Sheng Cao & Qiuyan Li & Jinju Zheng & Xi Yuan & Yunjun Wang & Bingsuo Zou & Jialong Zhao, 2025. "Highly efficient and eco-friendly green quantum dot light-emitting diodes through interfacial potential grading," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    12. An Cao & Yi Gong & Dilong Liu & Fan Yang & Yulong Fan & Yinghui Guo & Xingyou Tian & Yue Li, 2024. "Rapid fabrication of gold microsphere arrays with stable deep-pressing anisotropic conductivity for advanced packaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Wing Chung Liu & Vanessa Hui Yin Chou & Rohit Pratyush Behera & Hortense Le Ferrand, 2022. "Magnetically assisted drop-on-demand 3D printing of microstructured multimaterial composites," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Siyu He & Xiaoqi Tang & Yunzhou Deng & Ni Yin & Wangxiao Jin & Xiuyuan Lu & Desui Chen & Chenyang Wang & Tulai Sun & Qi Chen & Yizheng Jin, 2023. "Anomalous efficiency elevation of quantum-dot light-emitting diodes induced by operational degradation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Beiye C. Li & Kailai Lin & Ping-Jui E. Wu & Aritrajit Gupta & Kaiyue Peng & Siddhartha Sohoni & Justin C. Ondry & Zirui Zhou & Caitlin C. Bellora & Young Jay Ryu & Stella Chariton & David J. Gosztola , 2025. "Exciton-phonon coupling and phonon-assisted exciton relaxation dynamics in In1-xGaxP quantum dots," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    16. Sudhir Kumar & Tommaso Marcato & Frank Krumeich & Yen-Ting Li & Yu-Cheng Chiu & Chih-Jen Shih, 2022. "Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Junho Bae & Yuseop Shin & Hyungyu Yoo & Yongsu Choi & Jinho Lim & Dasom Jeon & Ilsoo Kim & Myungsoo Han & Seunghyun Lee, 2022. "Quantum dot-integrated GaN light-emitting diodes with resolution beyond the retinal limit," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Xingtong Chen & Xiongfeng Lin & Likuan Zhou & Xiaojuan Sun & Rui Li & Mengyu Chen & Yixing Yang & Wenjun Hou & Longjia Wu & Weiran Cao & Xin Zhang & Xiaolin Yan & Song Chen, 2023. "Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Xiao Wang & Zhi Qiao & Zhu Fang & Yufeng Zhai & Runze Yu & Gang Chen, 2025. "In-situ X-ray scattering observation of colloidal epitaxy at the gas-liquid-solid interface," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    20. Yajie Zhou & Yaxin Wang & Yonghui Song & Shanshan Zhao & Mingjiang Zhang & Guangen Li & Qi Guo & Zhi Tong & Zeyi Li & Shan Jin & Hong-Bin Yao & Manzhou Zhu & Taotao Zhuang, 2024. "Helical-caging enables single-emitted large asymmetric full-color circularly polarized luminescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59527-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.