IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58800-8.html
   My bibliography  Save this article

Exciton-phonon coupling and phonon-assisted exciton relaxation dynamics in In1-xGaxP quantum dots

Author

Listed:
  • Beiye C. Li

    (The University of Chicago
    The University of Chicago)

  • Kailai Lin

    (Berkeley
    Lawrence Berkeley National Laboratory)

  • Ping-Jui E. Wu

    (The University of Chicago
    The University of Chicago)

  • Aritrajit Gupta

    (The University of Chicago)

  • Kaiyue Peng

    (Berkeley
    Lawrence Berkeley National Laboratory)

  • Siddhartha Sohoni

    (The University of Chicago
    The University of Chicago)

  • Justin C. Ondry

    (The University of Chicago)

  • Zirui Zhou

    (The University of Chicago)

  • Caitlin C. Bellora

    (The University of Chicago
    The University of Chicago)

  • Young Jay Ryu

    (The University of Chicago)

  • Stella Chariton

    (The University of Chicago)

  • David J. Gosztola

    (Argonne National Laboratory)

  • Vitali B. Prakapenka

    (The University of Chicago)

  • Richard D. Schaller

    (Argonne National Laboratory
    Northwestern University)

  • Dmitri V. Talapin

    (The University of Chicago
    Argonne National Laboratory)

  • Eran Rabani

    (Berkeley
    Lawrence Berkeley National Laboratory
    The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science)

  • Gregory S. Engel

    (The University of Chicago
    The University of Chicago)

Abstract

Quantum dots leverage quantum confinement to modify the electronic structure of materials, separating electronic transitions from the composition of the corresponding bulk material. With ternary quantum dots, the composition may be varied continuously so that both composition and size may be used to tune the bandgap. As composition influences electron-phonon coupling which in turn governs relaxation dynamics, the composition of ternary quantum dots may be adjusted to change dynamics. Here, we show that exciton-phonon coupling and phonon-assisted exciton relaxation dynamics remain strongly correlated to material composition in ternary In0.62Ga0.38P/ZnS and In0.35Ga0.65P/ZnS quantum dots using both experimental two-dimensional electronic spectroscopy measurements and quantum dynamical simulations. Theoretical calculations show that alloyed In1-xGaxP quantum dots have more complex exciton level structure than parent InP quantum dots. We identify a slower hot exciton cooling rate in In0.62Ga0.38P/ZnS, attributed to the presence of ‘energy-retaining’ valley exciton states with strong exciton-phonon coupling. Experimental quantum beating maps reveal a more localized quantum beat pattern for In0.35Ga0.65P/ZnS quantum dots, which may relate to the increased number of ‘dim’ exciton levels with reduced spacings. These findings highlight that exciton relaxation dynamics and exciton-phonon coupling in an alloyed In1-xGaxP quantum dot system are composition-dependent.

Suggested Citation

  • Beiye C. Li & Kailai Lin & Ping-Jui E. Wu & Aritrajit Gupta & Kaiyue Peng & Siddhartha Sohoni & Justin C. Ondry & Zirui Zhou & Caitlin C. Bellora & Young Jay Ryu & Stella Chariton & David J. Gosztola , 2025. "Exciton-phonon coupling and phonon-assisted exciton relaxation dynamics in In1-xGaxP quantum dots," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58800-8
    DOI: 10.1038/s41467-025-58800-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58800-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58800-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bokang Hou & Michael Thoss & Uri Banin & Eran Rabani, 2023. "Incoherent nonadiabatic to coherent adiabatic transition of electron transfer in colloidal quantum dot molecules," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Elsa Cassette & Ryan D. Pensack & Benoît Mahler & Gregory D. Scholes, 2015. "Room-temperature exciton coherence and dephasing in two-dimensional nanostructures," Nature Communications, Nature, vol. 6(1), pages 1-7, May.
    3. Yu-Ho Won & Oul Cho & Taehyung Kim & Dae-Young Chung & Taehee Kim & Heejae Chung & Hyosook Jang & Junho Lee & Dongho Kim & Eunjoo Jang, 2019. "Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes," Nature, Nature, vol. 575(7784), pages 634-638, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongjoo Shin & Doosun Hong & Hyunjin Cho & Hanhwi Jang & Geon Yeong Kim & Kyeong Min Song & Min-Jae Choi & Donghun Kim & Yeon Sik Jung, 2024. "Indirect-to-direct bandgap transition in GaP semiconductors through quantum shell formation on ZnS nanocrystals," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Jiawei Chen & Kangyu Ji & Linjie Dai & Hengyang Xiang & Zhongzheng Yu & Affan N. Iqbal & Jian Wang & Xingyue Ma & Renjun Guo & Miguel Anaya & Xiufeng Song & Yang Lu & Yu-Hsien Chiang & Weijin Li & Yal, 2025. "Nanoscale heterophase regulation enables sunlight-like full-spectrum white electroluminescence," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    3. Zezhou Li & Zhiheng Xie & Yao Zhang & Xilong Mu & Jisheng Xie & Hai-Jing Yin & Ya-Wen Zhang & Colin Ophus & Jihan Zhou, 2023. "Probing the atomically diffuse interfaces in Pd@Pt core-shell nanoparticles in three dimensions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Sudhir Kumar & Tommaso Marcato & Frank Krumeich & Yen-Ting Li & Yu-Cheng Chiu & Chih-Jen Shih, 2022. "Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Kiyoung Jo & Emanuele Marino & Jason Lynch & Zhiqiao Jiang & Natalie Gogotsi & Thomas P. Darlington & Mohammad Soroush & P. James Schuck & Nicholas J. Borys & Christopher B. Murray & Deep Jariwala, 2023. "Direct nano-imaging of light-matter interactions in nanoscale excitonic emitters," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Yajie Zhou & Yaxin Wang & Yonghui Song & Shanshan Zhao & Mingjiang Zhang & Guangen Li & Qi Guo & Zhi Tong & Zeyi Li & Shan Jin & Hong-Bin Yao & Manzhou Zhu & Taotao Zhuang, 2024. "Helical-caging enables single-emitted large asymmetric full-color circularly polarized luminescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Hui Li & Jingyuan Zhang & Wen Wen & Yuyan Zhao & Hanfei Gao & Bingqiang Ji & Yunjun Wang & Lei Jiang & Yuchen Wu, 2025. "Highly efficient light-emitting diodes via self-assembled InP quantum dots," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    8. Qiang Su & Zinan Chen & Shuming Chen, 2024. "Tracing the electron transport behavior in quantum-dot light-emitting diodes via single photon counting technique," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Gao, Wenfang & Zeng, Xianju & Yang, Hailun & Chen, Fangfang & Pan, Anyu & Yang, Feiming & Wang, Yuting & Li, Huajie & Ren, Zhijun & Zhang, Guangming & Sun, Zhi, 2025. "Green manufacturing evaluation of light-emitting diodes lamps production: Resource and environmental assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    10. Junho Bae & Yuseop Shin & Hyungyu Yoo & Yongsu Choi & Jinho Lim & Dasom Jeon & Ilsoo Kim & Myungsoo Han & Seunghyun Lee, 2022. "Quantum dot-integrated GaN light-emitting diodes with resolution beyond the retinal limit," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Xingtong Chen & Xiongfeng Lin & Likuan Zhou & Xiaojuan Sun & Rui Li & Mengyu Chen & Yixing Yang & Wenjun Hou & Longjia Wu & Weiran Cao & Xin Zhang & Xiaolin Yan & Song Chen, 2023. "Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Wenjing Zhang & Bo Li & Chun Chang & Fei Chen & Qin Zhang & Qingli Lin & Lei Wang & Jinhang Yan & Fangfang Wang & Yihua Chong & Zuliang Du & Fengjia Fan & Huaibin Shen, 2024. "Stable and efficient pure blue quantum-dot LEDs enabled by inserting an anti-oxidation layer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58800-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.