IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v211y2025ics1364032124010438.html
   My bibliography  Save this article

Green manufacturing evaluation of light-emitting diodes lamps production: Resource and environmental assessment

Author

Listed:
  • Gao, Wenfang
  • Zeng, Xianju
  • Yang, Hailun
  • Chen, Fangfang
  • Pan, Anyu
  • Yang, Feiming
  • Wang, Yuting
  • Li, Huajie
  • Ren, Zhijun
  • Zhang, Guangming
  • Sun, Zhi

Abstract

Light-emitting diode lamps have become the mainstream lamps of the lighting industry, with practical significance such as energy savings and reducing greenhouse gas emissions. However, few studies have focused on the resource and environmental evaluation of light-emitting diode lamp production processes. In this research, a green manufacturing evaluation was developed by combining resource criticality and environmental impact assessment by analysing eight typical light-emitting diode lamp production processes. For resource criticality assessment, a metal criticality assessment method was built considering the special industrial parameters such as the technical level of the production plant, where the ordinary street lamp had the most lamp evaluation index based on the higher resource consumption and Ga and In were the most critical metals. For environmental impact assessment, it was concluded that the green bulb lamp was the most environmentally friendly lamp, and the ordinary street lamp had the most serious impact on the environment. Under the comprehensive evaluation, the green bulb lamp was the best lamp because its structure was simple and the quality of the material was smaller, while the ordinary street lamp was the worst lamp due to the higher quality of the material. Through the green manufacturing evaluation with resource criticality assessment and environmental impact assessment, the light-emitting diode lamp production process can be effectively evaluated, which can provide a basis for the material evaluation and cleaner production.

Suggested Citation

  • Gao, Wenfang & Zeng, Xianju & Yang, Hailun & Chen, Fangfang & Pan, Anyu & Yang, Feiming & Wang, Yuting & Li, Huajie & Ren, Zhijun & Zhang, Guangming & Sun, Zhi, 2025. "Green manufacturing evaluation of light-emitting diodes lamps production: Resource and environmental assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032124010438
    DOI: 10.1016/j.rser.2024.115317
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124010438
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115317?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Disna Eheliyagoda & Xianlai Zeng & Jinhui Li, 2020. "A method to assess national metal criticality: the environment as a foremost measurement," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-12, December.
    2. Yu-Ho Won & Oul Cho & Taehyung Kim & Dae-Young Chung & Taehee Kim & Heejae Chung & Hyosook Jang & Junho Lee & Dongho Kim & Eunjoo Jang, 2019. "Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes," Nature, Nature, vol. 575(7784), pages 634-638, November.
    3. Beccali, M. & Bonomolo, M. & Leccese, F. & Lista, D. & Salvadori, G., 2018. "On the impact of safety requirements, energy prices and investment costs in street lighting refurbishment design," Energy, Elsevier, vol. 165(PB), pages 739-759.
    4. Dongxin Ma & Kebin Lin & Yitong Dong & Hitarth Choubisa & Andrew H. Proppe & Dan Wu & Ya-Kun Wang & Bin Chen & Peicheng Li & James Z. Fan & Fanglong Yuan & Andrew Johnston & Yuan Liu & Yuetong Kang & , 2021. "Distribution control enables efficient reduced-dimensional perovskite LEDs," Nature, Nature, vol. 599(7886), pages 594-598, November.
    5. Nardelli, Andrei & Deuschle, Eduardo & de Azevedo, Leticia Dalpaz & Pessoa, João Lorenço Novaes & Ghisi, Enedir, 2017. "Assessment of Light Emitting Diodes technology for general lighting: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 368-379.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nina Sakinah Ahmad Rofaie & Seuk Wai Phoong & Muzalwana Abdul Talib & Ainin Sulaiman, 2023. "Light-emitting diode (LED) research: A bibliometric analysis during 2003–2018," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 173-191, February.
    2. Hongjoo Shin & Doosun Hong & Hyunjin Cho & Hanhwi Jang & Geon Yeong Kim & Kyeong Min Song & Min-Jae Choi & Donghun Kim & Yeon Sik Jung, 2024. "Indirect-to-direct bandgap transition in GaP semiconductors through quantum shell formation on ZnS nanocrystals," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Gaffuri, Pierre & Stolyarova, Elena & Llerena, Daniel & Appert, Estelle & Consonni, Marianne & Robin, Stéphane & Consonni, Vincent, 2021. "Potential substitutes for critical materials in white LEDs: Technological challenges and market opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Chiatti, Chiara & Fabiani, Claudia & Pisello, Anna Laura, 2023. "Toward the energy optimization of smart lighting systems through the luminous potential of photoluminescence," Energy, Elsevier, vol. 266(C).
    5. Wang, Zixuan & Chen, Zijian & Wang, Boyuan & Wu, Chuang & Zhou, Chao & Peng, Yang & Zhang, Xinyu & Ni, Zongming & Chung, Chi-yung & Chan, Ching-chuen & Yang, Jian & Zhao, Haitao, 2025. "Digital manufacturing of perovskite materials and solar cells," Applied Energy, Elsevier, vol. 377(PB).
    6. Yang Bryan Cao & Daquan Zhang & Qianpeng Zhang & Xiao Qiu & Yu Zhou & Swapnadeep Poddar & Yu Fu & Yudong Zhu & Jin-Feng Liao & Lei Shu & Beitao Ren & Yucheng Ding & Bing Han & Zhubing He & Dai-Bin Kua, 2023. "High-efficiency, flexible and large-area red/green/blue all-inorganic metal halide perovskite quantum wires-based light-emitting diodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Jiawei Chen & Kangyu Ji & Linjie Dai & Hengyang Xiang & Zhongzheng Yu & Affan N. Iqbal & Jian Wang & Xingyue Ma & Renjun Guo & Miguel Anaya & Xiufeng Song & Yang Lu & Yu-Hsien Chiang & Weijin Li & Yal, 2025. "Nanoscale heterophase regulation enables sunlight-like full-spectrum white electroluminescence," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    8. Taher Maatallah & Faisal Wahab & Mussad Alzahrani & Arshad Jamal & Sajid Ali, 2025. "Fiber Optic Daylighting with Concentrating Solar Collectors: A State-of-the-Art Review," Energies, MDPI, vol. 18(8), pages 1-27, April.
    9. Zezhou Li & Zhiheng Xie & Yao Zhang & Xilong Mu & Jisheng Xie & Hai-Jing Yin & Ya-Wen Zhang & Colin Ophus & Jihan Zhou, 2023. "Probing the atomically diffuse interfaces in Pd@Pt core-shell nanoparticles in three dimensions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Colmenar-Santos, Antonio & Palomo-Torrejón, Elisabet & Mur-Pérez, Francisco & Rosales-Asensio, Enrique, 2020. "Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast," Applied Energy, Elsevier, vol. 262(C).
    11. Enrique Navarrete-de Galvez & Alfonso Gago-Calderon & Luz Garcia-Ceballos & Miguel Angel Contreras-Lopez & Jose Ramon Andres-Diaz, 2021. "Adjustment of Lighting Parameters from Photopic to Mesopic Values in Outdoor Lighting Installations Strategy and Associated Evaluation of Variation in Energy Needs," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    12. Göçmen Polat, Elifcan & Yücesan, Melih & Gül, Muhammet, 2023. "A comparative framework for criticality assessment of strategic raw materials in Turkey," Resources Policy, Elsevier, vol. 82(C).
    13. Karolina M. Zielinska-Dabkowska & Kyra Xavia, 2019. "Global Approaches to Reduce Light Pollution from Media Architecture and Non-Static, Self-Luminous LED Displays for Mixed-Use Urban Developments," Sustainability, MDPI, vol. 11(12), pages 1-33, June.
    14. Francesco Leccese & Davide Lista & Giacomo Salvadori & Marco Beccali & Marina Bonomolo, 2020. "On the Applicability of the Space Syntax Methodology for the Determination of Street Lighting Classes," Energies, MDPI, vol. 13(6), pages 1-12, March.
    15. Lingyan Zhang & Shan Huang & Yunchen Zhu & Chen Hua & Mingjun Cheng & Song Yao & Yonghua Li, 2023. "Supply and Demand for Planning and Construction of Nighttime Urban Lighting: A Comparative Case Study of Binjiang District, Hangzhou," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    16. Sadeghian, Omid & Mohammadi-Ivatloo, Behnam & Oshnoei, Arman & Aghaei, Jamshid, 2024. "Unveiling the potential of renewable energy and battery utilization in real-world public lighting systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    17. Zahra Fallahi & Gregor P. Henze, 2019. "Interactive Buildings: A Review," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
    18. Johan Rahm & Maria Johansson, 2021. "Assessment of Outdoor Lighting: Methods for Capturing the Pedestrian Experience in the Field," Energies, MDPI, vol. 14(13), pages 1-15, July.
    19. Xabat Oregi & Rufino Javier Hernández & Patxi Hernandez, 2020. "Environmental and Economic Prioritization of Building Energy Refurbishment Strategies with Life-Cycle Approach," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    20. Hui Li & Jingyuan Zhang & Wen Wen & Yuyan Zhao & Hanfei Gao & Bingqiang Ji & Yunjun Wang & Lei Jiang & Yuchen Wu, 2025. "Highly efficient light-emitting diodes via self-assembled InP quantum dots," Nature Communications, Nature, vol. 16(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032124010438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.