IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3233-d1683727.html
   My bibliography  Save this article

A Dimensionless Number for Evaluating the Influence of Heat Conduction in the Gas Phase on Liquid Evaporation

Author

Listed:
  • Longfei Xu

    (School of Technology, Beijing Forestry University, Beijing 100083, China)

  • Xuefeng Xu

    (School of Technology, Beijing Forestry University, Beijing 100083, China)

Abstract

Heat conduction in the gas phase may influence liquid evaporation, yet a quantitative characterization of this effect still remains lacking. Here, through dimensionless analysis of the theoretical model for droplet evaporation, two limiting solutions were obtained for the droplet evaporation considering heat conduction in the gas phase. Based on these solutions, a dimensionless number, HCg , was introduced to evaluate the influence of heat conduction in the gas phase on liquid evaporation. Further analysis indicates that HCg is a function of the relative thermal conductivity of the surrounding air, the evaporative cooling number of the liquid, and the contact angle of the droplet. Analytical expressions for both HCg and the droplet evaporation rate were acquired by fitting the numerical simulations. These results show that the effect of gas-phase heat conduction can generally be neglected due to the typically small values of HCg but becomes significant in cases involving atmospheres with higher thermal conductivity, liquids with smaller evaporative cooling numbers, or droplets with larger contact angles. This work may provide a simple yet accurate criterion for estimating the effects of gas-phase heat conduction on liquid evaporation.

Suggested Citation

  • Longfei Xu & Xuefeng Xu, 2025. "A Dimensionless Number for Evaluating the Influence of Heat Conduction in the Gas Phase on Liquid Evaporation," Energies, MDPI, vol. 18(13), pages 1-9, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3233-:d:1683727
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3233/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3233/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert D. Deegan & Olgica Bakajin & Todd F. Dupont & Greb Huber & Sidney R. Nagel & Thomas A. Witten, 1997. "Capillary flow as the cause of ring stains from dried liquid drops," Nature, Nature, vol. 389(6653), pages 827-829, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergey Misyura & Andrey Semenov & Yulia Peschenyuk & Ivan Vozhakov & Vladimir Morozov, 2023. "Nonisothermal Evaporation of Sessile Drops of Aqueous Solutions with Surfactant," Energies, MDPI, vol. 16(2), pages 1-21, January.
    2. Xiaodong Zhang & Yugang Zhao & Dongmin Wang, 2023. "Characterization of the Temperature Profile near Contact Lines of an Evaporating Sessile Drop," Energies, MDPI, vol. 16(6), pages 1-12, March.
    3. An Cao & Yi Gong & Dilong Liu & Fan Yang & Yulong Fan & Yinghui Guo & Xingyou Tian & Yue Li, 2024. "Rapid fabrication of gold microsphere arrays with stable deep-pressing anisotropic conductivity for advanced packaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Xiao Wang & Zhi Qiao & Zhu Fang & Yufeng Zhai & Runze Yu & Gang Chen, 2025. "In-situ X-ray scattering observation of colloidal epitaxy at the gas-liquid-solid interface," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    5. Dan Xu & Xintong Meng & Siyuan Liu & Jade Poisson & Philipp Vana & Kai Zhang, 2024. "Dehydration regulates structural reorganization of dynamic hydrogels," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Fanny Thorimbert & Mateusz Odziomek & Denis Chateau & Stéphane Parola & Marco Faustini, 2024. "Programming crack patterns with light in colloidal plasmonic films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Hui Li & Jingyuan Zhang & Wen Wen & Yuyan Zhao & Hanfei Gao & Bingqiang Ji & Yunjun Wang & Lei Jiang & Yuchen Wu, 2025. "Highly efficient light-emitting diodes via self-assembled InP quantum dots," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    8. Alberto Gomez-Gomez & Diego Ribas Gomes & Benedikt F. Winhard & Laura G. Maragno & Antoine E. Jimenez & Marie Thibaudet & Julia Brandt & Alexander Petrov & Manfred Eich & Kaline P. Furlan, 2025. "Printing photonic-based thermal barrier coatings onto metal alloy," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    9. Wing Chung Liu & Vanessa Hui Yin Chou & Rohit Pratyush Behera & Hortense Le Ferrand, 2022. "Magnetically assisted drop-on-demand 3D printing of microstructured multimaterial composites," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Deng, Xingfa & Su, Qiaoqiao & He, Yan & Dai, Ruqing & Xu, Xinyu & Zou, Bingsuo & Yang, Yu & Cui, Xuemin, 2024. "Preparation of antifouling Janus photo evaporator by in-situ growth of carbon nanotubes/graphene on zeolite surface," Applied Energy, Elsevier, vol. 359(C).
    11. Strelova, Svetlana V. & Gordeeva, Larisa G. & Grekova, Alexandra D. & Salanov, Aleksei N. & Aristov, Yuri I., 2023. "Composites “lithium chloride/vermiculite” for adsorption thermal batteries: Giant acceleration of sorption dynamics," Energy, Elsevier, vol. 263(PB).
    12. Yunus Tansu Aksoy & Yanshen Zhu & Pinar Eneren & Erin Koos & Maria Rosaria Vetrano, 2020. "The Impact of Nanofluids on Droplet/Spray Cooling of a Heated Surface: A Critical Review," Energies, MDPI, vol. 14(1), pages 1-33, December.
    13. Yuchen Qiu & Bo Zhang & Junchuan Yang & Hanfei Gao & Shuang Li & Le Wang & Penghua Wu & Yewang Su & Yan Zhao & Jiangang Feng & Lei Jiang & Yuchen Wu, 2021. "Wafer-scale integration of stretchable semiconducting polymer microstructures via capillary gradient," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3233-:d:1683727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.