IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p843-d1032532.html
   My bibliography  Save this article

Nonisothermal Evaporation of Sessile Drops of Aqueous Solutions with Surfactant

Author

Listed:
  • Sergey Misyura

    (Kutateladze Institute of Thermophysics SB RAS, 630090 Novosibirsk, Russia)

  • Andrey Semenov

    (Kutateladze Institute of Thermophysics SB RAS, 630090 Novosibirsk, Russia
    Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia)

  • Yulia Peschenyuk

    (Kutateladze Institute of Thermophysics SB RAS, 630090 Novosibirsk, Russia
    Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia)

  • Ivan Vozhakov

    (Kutateladze Institute of Thermophysics SB RAS, 630090 Novosibirsk, Russia
    Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia)

  • Vladimir Morozov

    (Kutateladze Institute of Thermophysics SB RAS, 630090 Novosibirsk, Russia)

Abstract

In recent decades, electronic devices have tended towards miniaturization, which necessitates the development of new cooling systems. Droplet cooling on a heated wall is effectively used in power devices with high heat flux densities. The use of a surfactant leads to an increase in the diameter of the wetted spot and the rate of droplet evaporation. Despite the wide interest and numerous works in this area, there are still unexplored questions regarding the influence of surfactant and wall temperature on convection, of nonisothermality, and of the decrease in the partial pressure of vapor with increasing surfactant concentration. This work experimentally studies the effect on the rate of droplet evaporation of wall temperature in the range 20–90 °C and of the concentration of surfactant in an aqueous solution of sodium lauryl sulfate (SLS) from 0 to 10,000 ppm. It is shown for the first time that an inversion of the evaporation rate related to the droplet diameter occurs with increasing wall temperature. The influence of key factors on the evaporation of a water droplet with SLS changes with temperature. Thus, at a slightly heated wall, the growth of the droplet diameter becomes predominant. At high heat flux, the role of nonisothermality is predominant. To determine the individual influence of the surfactant on the partial pressure of water vapor, experiments on the evaporation of a liquid layer were carried out. The obtained results and simplified estimates may be used to develop existing calculation models, as well as to optimize technologies for cooling highly heated surfaces.

Suggested Citation

  • Sergey Misyura & Andrey Semenov & Yulia Peschenyuk & Ivan Vozhakov & Vladimir Morozov, 2023. "Nonisothermal Evaporation of Sessile Drops of Aqueous Solutions with Surfactant," Energies, MDPI, vol. 16(2), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:843-:d:1032532
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/843/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/843/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert D. Deegan & Olgica Bakajin & Todd F. Dupont & Greb Huber & Sidney R. Nagel & Thomas A. Witten, 1997. "Capillary flow as the cause of ring stains from dried liquid drops," Nature, Nature, vol. 389(6653), pages 827-829, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fanny Thorimbert & Mateusz Odziomek & Denis Chateau & Stéphane Parola & Marco Faustini, 2024. "Programming crack patterns with light in colloidal plasmonic films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Xiaodong Zhang & Yugang Zhao & Dongmin Wang, 2023. "Characterization of the Temperature Profile near Contact Lines of an Evaporating Sessile Drop," Energies, MDPI, vol. 16(6), pages 1-12, March.
    3. Wing Chung Liu & Vanessa Hui Yin Chou & Rohit Pratyush Behera & Hortense Le Ferrand, 2022. "Magnetically assisted drop-on-demand 3D printing of microstructured multimaterial composites," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Strelova, Svetlana V. & Gordeeva, Larisa G. & Grekova, Alexandra D. & Salanov, Aleksei N. & Aristov, Yuri I., 2023. "Composites “lithium chloride/vermiculite” for adsorption thermal batteries: Giant acceleration of sorption dynamics," Energy, Elsevier, vol. 263(PB).
    5. Yunus Tansu Aksoy & Yanshen Zhu & Pinar Eneren & Erin Koos & Maria Rosaria Vetrano, 2020. "The Impact of Nanofluids on Droplet/Spray Cooling of a Heated Surface: A Critical Review," Energies, MDPI, vol. 14(1), pages 1-33, December.
    6. Yuchen Qiu & Bo Zhang & Junchuan Yang & Hanfei Gao & Shuang Li & Le Wang & Penghua Wu & Yewang Su & Yan Zhao & Jiangang Feng & Lei Jiang & Yuchen Wu, 2021. "Wafer-scale integration of stretchable semiconducting polymer microstructures via capillary gradient," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:843-:d:1032532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.