IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59260-w.html
   My bibliography  Save this article

Local mapping of the nanoscale viscoelastic properties of fluid membranes by AFM nanorheology

Author

Listed:
  • William Trewby

    (South Road
    University College London)

  • Mahdi Tavakol

    (South Road
    Parks Road)

  • Kislon Voïtchovsky

    (South Road)

Abstract

Biological membranes are intrinsically dynamic entities that continually adapt their biophysical properties and molecular organisation to support cellular function. Current microscopy techniques can derive high-resolution structural information of labelled molecules but quantifying the associated viscoelastic behaviour with nanometre precision remains challenging. Here, we develop an approach based on atomic force microscopy in conjunction with fast nano-actuators to map the viscoelastic response of unlabelled supported membranes with nanometre spatial resolution. On fluid membranes, we show that the method can quantify local variations in the molecular mobility of the lipids and derive a diffusion coefficient. We confirm our experimental approach with molecular dynamics simulations, also highlighting the role played by the water at the interface with the membrane on the measurement. Probing ternary model bilayers reveals spatial correlations in the local diffusion over distances of ≈20 nm within liquid disordered domains. This lateral correlation is enhanced in native bovine lens membranes, where the inclusion of protein-rich domains induces four-fold variations in the diffusion coefficient across

Suggested Citation

  • William Trewby & Mahdi Tavakol & Kislon Voïtchovsky, 2025. "Local mapping of the nanoscale viscoelastic properties of fluid membranes by AFM nanorheology," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59260-w
    DOI: 10.1038/s41467-025-59260-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59260-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59260-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59260-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.