IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59049-x.html
   My bibliography  Save this article

Understanding ultrafast free-rising bubble capturing on nano/micro-structured super-aerophilic surfaces

Author

Listed:
  • Yue Hu

    (Shanghai Jiao Tong University)

  • Zhenbo Xu

    (City University of Hong Kong)

  • Haotian Shi

    (Shanghai Jiao Tong University)

  • Benlong Wang

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Liqiu Wang

    (The Hong Kong Polytechnic University)

  • Lu-Wen Zhang

    (Shanghai Jiao Tong University)

Abstract

Rapid bubble capture is essential for collecting targeted gaseous media and eliminating floating impurities across aquatic environments. While the role of nanostructures during the collision of free-rising bubbles with super-aerophilic surfaces is well established, the fundamental contribution of microtextures in promoting initial capture, even before contact, has yet to be fully understood. We report the rising bubble-induced large deformation of the entrapped gas layer, rapidly thinning the liquid film to its rupture threshold and thus achieving an ultrafast bubble capture down to about 1 ms with an array of microcones, decorated with nanoparticles as a convenient example to obtain super-aerophilicity. This rapid capture is also very stable due to the hysteresis movement of three-phase contact lines that inspired a critical pressure criterion for ensuring gas-layer stability and capture efficacy. The present nano/microstructured surface supports prolonged, loss-free gas transport in challenging shear flow as well, providing robust bubble control strategies for diverse systems.

Suggested Citation

  • Yue Hu & Zhenbo Xu & Haotian Shi & Benlong Wang & Liqiu Wang & Lu-Wen Zhang, 2025. "Understanding ultrafast free-rising bubble capturing on nano/micro-structured super-aerophilic surfaces," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59049-x
    DOI: 10.1038/s41467-025-59049-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59049-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59049-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Timothée Mouterde & Pierre Lecointre & Gaëlle Lehoucq & Antonio Checco & Christophe Clanet & David Quéré, 2019. "Two recipes for repelling hot water," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. Heping Xie & Zhiyu Zhao & Tao Liu & Yifan Wu & Cheng Lan & Wenchuan Jiang & Liangyu Zhu & Yunpeng Wang & Dongsheng Yang & Zongping Shao, 2022. "A membrane-based seawater electrolyser for hydrogen generation," Nature, Nature, vol. 612(7941), pages 673-678, December.
    3. Philip G. D. Matthews & Roger S. Seymour, 2006. "Diving insects boost their buoyancy bubbles," Nature, Nature, vol. 441(7090), pages 171-171, May.
    4. Eddy M. Domingues & Sankara Arunachalam & Jamilya Nauruzbayeva & Himanshu Mishra, 2018. "Biomimetic coating-free surfaces for long-term entrapment of air under wetting liquids," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    5. Manoj Kumar Tripathi & Kirti Chandra Sahu & Rama Govindarajan, 2015. "Dynamics of an initially spherical bubble rising in quiescent liquid," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Anquan Zhu & Lulu Qiao & Kai Liu & Guoqiang Gan & Chuhao Luan & Dewu Lin & Yin Zhou & Shuyu Bu & Tian Zhang & Kunlun Liu & Tianyi Song & Heng Liu & Hao Li & Guo Hong & Wenjun Zhang, 2025. "Rational design of precatalysts and controlled evolution of catalyst-electrolyte interface for efficient hydrogen production," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    3. Libo Wu & Wanheng Lu & Wei Li Ong & Andrew See Weng Wong & Yuanming Zhang & Tianxi Zhang & Kaiyang Zeng & Zhifeng Ren & Ghim Wei Ho, 2025. "Photothermal-promoted anion exchange membrane seawater electrolysis on a nickel-molybdenum-based catalyst," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    4. Corinna Köpke & Jennifer Mielniczek & Alexander Stolz, 2023. "Testing Resilience Aspects of Operation Options for Offshore Wind Farms beyond the End-of-Life," Energies, MDPI, vol. 16(12), pages 1-12, June.
    5. Liufei Shen & Cheng Zhang & Feiyue Shan & Long Chen & Shuai Liu & Zhiqiang Zheng & Litong Zhu & Jinduo Wang & Xingzheng Wu & Yujia Zhai, 2024. "Review and Prospects of Key Technologies for Integrated Systems in Hydrogen Production from Offshore Superconducting Wind Power," Energies, MDPI, vol. 18(1), pages 1-17, December.
    6. Chenhui Zhou & Jia Shi & Zhaoqi Dong & Lingyou Zeng & Yan Chen & Ying Han & Lu Li & Wenyu Zhang & Qinghua Zhang & Lin Gu & Fan Lv & Mingchuan Luo & Shaojun Guo, 2024. "Oxophilic gallium single atoms bridged ruthenium clusters for practical anion-exchange membrane electrolyzer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Bowen, Hu & Xianzhen, Mi & Yu, Liyuan & Shuchen, Li & Wei, Li & Chao, Wei, 2024. "Effects of cushion gas pressure and operating parameters on the capacity of hydrogen storage in lined rock caverns (LRC)," Renewable Energy, Elsevier, vol. 235(C).
    8. Mengjun Xiao & Qianbao Wu & Ruiqi Ku & Liujiang Zhou & Chang Long & Junwu Liang & Andraž Mavrič & Lei Li & Jing Zhu & Matjaz Valant & Jiong Li & Zhenhua Zeng & Chunhua Cui, 2023. "Self-adaptive amorphous CoOxCly electrocatalyst for sustainable chlorine evolution in acidic brine," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Sixie Zhang & Yunan Wang & Shuyu Li & Zhongfeng Wang & Haocheng Chen & Li Yi & Xu Chen & Qihao Yang & Wenwen Xu & Aiying Wang & Zhiyi Lu, 2023. "Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Zheng-Jie Chen & Jiuyi Dong & Jiajing Wu & Qiting Shao & Na Luo & Minwei Xu & Yuanmiao Sun & Yongbing Tang & Jing Peng & Hui-Ming Cheng, 2023. "Acidic enol electrooxidation-coupled hydrogen production with ampere-level current density," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Xin Kang & Fengning Yang & Zhiyuan Zhang & Heming Liu & Shiyu Ge & Shuqi Hu & Shaohai Li & Yuting Luo & Qiangmin Yu & Zhibo Liu & Qiang Wang & Wencai Ren & Chenghua Sun & Hui-Ming Cheng & Bilu Liu, 2023. "A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Qichen Wang & Zhengmeng Hou & Yilin Guo & Liangchao Huang & Yanli Fang & Wei Sun & Yuhan Ge, 2023. "Enhancing Energy Transition through Sector Coupling: A Review of Technologies and Models," Energies, MDPI, vol. 16(13), pages 1-31, July.
    13. Thomas Adisorn & Maike Venjakob & Julia Pössinger & Sibel Raquel Ersoy & Oliver Wagner & Raphael Moser, 2023. "Implications of the Interrelations between the (Waste)Water Sector and Hydrogen Production for Arid Countries Using the Example of Jordan," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    14. Jie Liang & Zhengwei Cai & Zixiao Li & Yongchao Yao & Yongsong Luo & Shengjun Sun & Dongdong Zheng & Qian Liu & Xuping Sun & Bo Tang, 2024. "Efficient bubble/precipitate traffic enables stable seawater reduction electrocatalysis at industrial-level current densities," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Xiao-Long Zhang & Peng-Cheng Yu & Shu-Ping Sun & Lei Shi & Peng-Peng Yang & Zhi-Zheng Wu & Li-Ping Chi & Ya-Rong Zheng & Min-Rui Gao, 2024. "In situ ammonium formation mediates efficient hydrogen production from natural seawater splitting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Gabriela Scheibel Cassol & Chii Shang & Alicia Kyoungjin An & Noman Khalid Khanzada & Francesco Ciucci & Alessandro Manzotti & Paul Westerhoff & Yinghao Song & Li Ling, 2024. "Ultra-fast green hydrogen production from municipal wastewater by an integrated forward osmosis-alkaline water electrolysis system," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Zhengwei Cai & Jie Liang & Zixiao Li & Tingyu Yan & Chaoxin Yang & Shengjun Sun & Meng Yue & Xuwei Liu & Ting Xie & Yan Wang & Tingshuai Li & Yongsong Luo & Dongdong Zheng & Qian Liu & Jingxiang Zhao , 2024. "Stabilizing NiFe sites by high-dispersity of nanosized and anionic Cr species toward durable seawater oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Ji Kai Liu & Mengde Kang & Kai Huang & Hao Guan Xu & Yi Xiao Wu & Xin Yu Zhang & Yan Zhu & Hao Fan & Song Ru Fang & Yi Zhou & Cheng Lian & Peng Fei Liu & Hua Gui Yang, 2025. "Stable Ni(II) sites in Prussian blue analogue for selective, ampere-level ethylene glycol electrooxidation," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    19. Xinxuan Duan & Qihao Sha & Pengsong Li & Tianshui Li & Guotao Yang & Wei Liu & Ende Yu & Daojin Zhou & Jinjie Fang & Wenxing Chen & Yizhen Chen & Lirong Zheng & Jiangwen Liao & Zeyu Wang & Yaping Li &, 2024. "Dynamic chloride ion adsorption on single iridium atom boosts seawater oxidation catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Wang, Yifei & Dong, Guangzhong & Yu, Jincheng & Qin, Caiyan & Feng, Yu & Deng, Yanfei & Zhang, Mingming, 2025. "In-situ green hydrogen production from offshore wind farms, a prospective review," Renewable Energy, Elsevier, vol. 239(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59049-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.