IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3016-d1673380.html
   My bibliography  Save this article

Recent Progress in Seawater Splitting Hydrogen Production Assisted by Value-Added Electrooxidation Reactions

Author

Listed:
  • Yuanping Guo

    (College of Chemistry and Environment Protection, Southwest University for Nationalities, Chengdu 610041, China
    College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China)

  • Chenghao Yang

    (College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China
    College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610065, China)

  • Jianli Yang

    (College of Chemistry and Environment Protection, Southwest University for Nationalities, Chengdu 610041, China)

  • Xin Xiao

    (College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China)

  • Maofei Ran

    (College of Chemistry and Environment Protection, Southwest University for Nationalities, Chengdu 610041, China)

  • Jing Li

    (College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China)

Abstract

Electrolysis of abundant seawater resources is a promising approach for hydrogen production. However, the high-concentration chloride ion in seawater readily induces the chlorine evolution reaction (CER), resulting in catalyst degradation and decreased electrolysis efficiency. In recent years, the electrooxidation of small organic molecules (e.g., methanol), biomass-derived compounds (e.g., 5-hydroxymethylfurfural), and plastic monomers (e.g., ethylene glycol) has been seen to occur at lower potentials to substitute for the traditional oxygen evolution reaction (OER) and CER. This alternative approach not only significantly reduces energy consumption for hydrogen production but also generates value-added products at the anode. This review provides a comprehensive summary of research advancements in value-added electrooxidation reaction-assisted seawater hydrogen production technologies and emphasizes the underlying principles of various reactions and catalyst design methodologies. Finally, the current challenges in this field and potential future research directions are systematically discussed.

Suggested Citation

  • Yuanping Guo & Chenghao Yang & Jianli Yang & Xin Xiao & Maofei Ran & Jing Li, 2025. "Recent Progress in Seawater Splitting Hydrogen Production Assisted by Value-Added Electrooxidation Reactions," Energies, MDPI, vol. 18(12), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3016-:d:1673380
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3016/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3016/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soumaya Hajji & Nabila Allouche & Salem Bouri & Awad M. Aljuaid & Wafik Hachicha, 2021. "Assessment of Seawater Intrusion in Coastal Aquifers Using Multivariate Statistical Analyses and Hydrochemical Facies Evolution-Based Model," IJERPH, MDPI, vol. 19(1), pages 1-18, December.
    2. Heping Xie & Zhiyu Zhao & Tao Liu & Yifan Wu & Cheng Lan & Wenchuan Jiang & Liangyu Zhu & Yunpeng Wang & Dongsheng Yang & Zongping Shao, 2022. "A membrane-based seawater electrolyser for hydrogen generation," Nature, Nature, vol. 612(7941), pages 673-678, December.
    3. Aubaid Ullah & Nur Awanis Hashim & Mohamad Fairus Rabuni & Mohd Usman Mohd Junaidi, 2023. "A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency," Energies, MDPI, vol. 16(3), pages 1-35, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Shanbhag, Mahesh M. & Mishra, Shanu & Shetti, Nagaraj P. & Pollet, Bruno G. & Kalanur, Shankara S., 2025. "Exploring the role of saline water splitting in sustainable energy solutions and hydrogen economy," Applied Energy, Elsevier, vol. 389(C).
    3. Corinna Köpke & Jennifer Mielniczek & Alexander Stolz, 2023. "Testing Resilience Aspects of Operation Options for Offshore Wind Farms beyond the End-of-Life," Energies, MDPI, vol. 16(12), pages 1-12, June.
    4. Liufei Shen & Cheng Zhang & Feiyue Shan & Long Chen & Shuai Liu & Zhiqiang Zheng & Litong Zhu & Jinduo Wang & Xingzheng Wu & Yujia Zhai, 2024. "Review and Prospects of Key Technologies for Integrated Systems in Hydrogen Production from Offshore Superconducting Wind Power," Energies, MDPI, vol. 18(1), pages 1-17, December.
    5. Jamshid Yakhshilikov & Marco Cavana & Pierluigi Leone, 2024. "A Review of the Energy System and Transport Sector in Uzbekistan in View of Future Hydrogen Uptake," Energies, MDPI, vol. 17(16), pages 1-30, August.
    6. Sixie Zhang & Yunan Wang & Shuyu Li & Zhongfeng Wang & Haocheng Chen & Li Yi & Xu Chen & Qihao Yang & Wenwen Xu & Aiying Wang & Zhiyi Lu, 2023. "Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Zheng-Jie Chen & Jiuyi Dong & Jiajing Wu & Qiting Shao & Na Luo & Minwei Xu & Yuanmiao Sun & Yongbing Tang & Jing Peng & Hui-Ming Cheng, 2023. "Acidic enol electrooxidation-coupled hydrogen production with ampere-level current density," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Xin Kang & Fengning Yang & Zhiyuan Zhang & Heming Liu & Shiyu Ge & Shuqi Hu & Shaohai Li & Yuting Luo & Qiangmin Yu & Zhibo Liu & Qiang Wang & Wencai Ren & Chenghua Sun & Hui-Ming Cheng & Bilu Liu, 2023. "A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Thomas Adisorn & Maike Venjakob & Julia Pössinger & Sibel Raquel Ersoy & Oliver Wagner & Raphael Moser, 2023. "Implications of the Interrelations between the (Waste)Water Sector and Hydrogen Production for Arid Countries Using the Example of Jordan," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    10. Jie Liang & Zhengwei Cai & Zixiao Li & Yongchao Yao & Yongsong Luo & Shengjun Sun & Dongdong Zheng & Qian Liu & Xuping Sun & Bo Tang, 2024. "Efficient bubble/precipitate traffic enables stable seawater reduction electrocatalysis at industrial-level current densities," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Xiao-Long Zhang & Peng-Cheng Yu & Shu-Ping Sun & Lei Shi & Peng-Peng Yang & Zhi-Zheng Wu & Li-Ping Chi & Ya-Rong Zheng & Min-Rui Gao, 2024. "In situ ammonium formation mediates efficient hydrogen production from natural seawater splitting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Gabriela Scheibel Cassol & Chii Shang & Alicia Kyoungjin An & Noman Khalid Khanzada & Francesco Ciucci & Alessandro Manzotti & Paul Westerhoff & Yinghao Song & Li Ling, 2024. "Ultra-fast green hydrogen production from municipal wastewater by an integrated forward osmosis-alkaline water electrolysis system," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Zhengwei Cai & Jie Liang & Zixiao Li & Tingyu Yan & Chaoxin Yang & Shengjun Sun & Meng Yue & Xuwei Liu & Ting Xie & Yan Wang & Tingshuai Li & Yongsong Luo & Dongdong Zheng & Qian Liu & Jingxiang Zhao , 2024. "Stabilizing NiFe sites by high-dispersity of nanosized and anionic Cr species toward durable seawater oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Ji Kai Liu & Mengde Kang & Kai Huang & Hao Guan Xu & Yi Xiao Wu & Xin Yu Zhang & Yan Zhu & Hao Fan & Song Ru Fang & Yi Zhou & Cheng Lian & Peng Fei Liu & Hua Gui Yang, 2025. "Stable Ni(II) sites in Prussian blue analogue for selective, ampere-level ethylene glycol electrooxidation," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    15. Wang, Yifei & Dong, Guangzhong & Yu, Jincheng & Qin, Caiyan & Feng, Yu & Deng, Yanfei & Zhang, Mingming, 2025. "In-situ green hydrogen production from offshore wind farms, a prospective review," Renewable Energy, Elsevier, vol. 239(C).
    16. Min Li & Hong Li & Hefei Fan & Qianfeng Liu & Zhao Yan & Aiqin Wang & Bing Yang & Erdong Wang, 2024. "Engineering interfacial sulfur migration in transition-metal sulfide enables low overpotential for durable hydrogen evolution in seawater," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Tongtong Li & Boran Wang & Yu Cao & Zhexuan Liu & Shaogang Wang & Qi Zhang & Jie Sun & Guangmin Zhou, 2024. "Energy-saving hydrogen production by seawater electrolysis coupling tip-enhanced electric field promoted electrocatalytic sulfion oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Tao Liu & Cheng Lan & Min Tang & Mengxin Li & Yitao Xu & Hangrui Yang & Qingyue Deng & Wenchuan Jiang & Zhiyu Zhao & Yifan Wu & Heping Xie, 2024. "Redox-mediated decoupled seawater direct splitting for H2 production," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Chen, Huayu & Wang, Zehao & He, He & Chen, Jiadian & Yin, Hang & Yu, Dandan & Liang, Junhui & Qin, Laishun & Huang, Yuexiang & Chen, Da, 2024. "Few-layer MoAlB nanosheets with Al vacancies enhanced hydroxyl adsorption for improved water oxidation kinetics," Renewable Energy, Elsevier, vol. 225(C).
    20. Ramakrishnan, Shanmugam & Delpisheh, Mostafa & Convery, Caillean & Niblett, Daniel & Vinothkannan, Mohanraj & Mamlouk, Mohamed, 2024. "Offshore green hydrogen production from wind energy: Critical review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3016-:d:1673380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.