IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58825-z.html
   My bibliography  Save this article

Shared pathway-specific network mechanisms of dopamine and deep brain stimulation for the treatment of Parkinson’s disease

Author

Listed:
  • Thomas S. Binns

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
    corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
    Bernstein Center for Computational Neuroscience Berlin)

  • Richard M. Köhler

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin)

  • Jojo Vanhoecke

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin)

  • Meera Chikermane

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin)

  • Moritz Gerster

    (Bernstein Center for Computational Neuroscience Berlin
    Max Planck Institute for Human Cognitive and Brain Sciences
    corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin)

  • Timon Merk

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin)

  • Franziska Pellegrini

    (Bernstein Center for Computational Neuroscience Berlin
    Bernstein Center for Computational Neuroscience)

  • Johannes L. Busch

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin)

  • Jeroen G. V. Habets

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin)

  • Alessia Cavallo

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
    corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
    Bernstein Center for Computational Neuroscience Berlin)

  • Jean-Christin Beyer

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin)

  • Bassam Al-Fatly

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin)

  • Ningfei Li

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin)

  • Andreas Horn

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
    corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
    Harvard Medical School
    Harvard Medical School)

  • Patricia Krause

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin)

  • Katharina Faust

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin)

  • Gerd-Helge Schneider

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin)

  • Stefan Haufe

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
    Bernstein Center for Computational Neuroscience Berlin
    Bernstein Center for Computational Neuroscience
    Technische Universität Berlin)

  • Andrea A. Kühn

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
    corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
    Bernstein Center for Computational Neuroscience Berlin
    corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin)

  • Wolf-Julian Neumann

    (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
    corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
    Bernstein Center for Computational Neuroscience Berlin)

Abstract

Deep brain stimulation is a brain circuit intervention that can modulate distinct neural pathways for the alleviation of neurological symptoms in patients with brain disorders. In Parkinson’s disease, subthalamic deep brain stimulation clinically mimics the effect of dopaminergic drug treatment, but the shared pathway mechanisms on cortex – basal ganglia networks are unknown. To address this critical knowledge gap, we combined fully invasive neural multisite recordings in patients undergoing deep brain stimulation surgery with normative MRI-based whole-brain connectomics. Our findings demonstrate that dopamine and stimulation exert distinct mesoscale effects through modulation of local neural population activity. In contrast, at the macroscale, stimulation mimics dopamine in its suppression of excessive interregional network synchrony associated with indirect and hyperdirect cortex – basal ganglia pathways. Our results provide a better understanding of the circuit mechanisms of dopamine and deep brain stimulation, laying the foundation for advanced closed-loop neurostimulation therapies.

Suggested Citation

  • Thomas S. Binns & Richard M. Köhler & Jojo Vanhoecke & Meera Chikermane & Moritz Gerster & Timon Merk & Franziska Pellegrini & Johannes L. Busch & Jeroen G. V. Habets & Alessia Cavallo & Jean-Christin, 2025. "Shared pathway-specific network mechanisms of dopamine and deep brain stimulation for the treatment of Parkinson’s disease," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58825-z
    DOI: 10.1038/s41467-025-58825-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58825-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58825-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. L. Iskhakova & P. Rappel & M. Deffains & G. Fonar & O. Marmor & R. Paz & Z. Israel & R. Eitan & H. Bergman, 2021. "Modulation of dopamine tone induces frequency shifts in cortico-basal ganglia beta oscillations," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    2. repec:plo:pcbi00:1004609 is not listed on IDEAS
    3. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    4. Ashwini Oswal & Chunyan Cao & Chien-Hung Yeh & Wolf-Julian Neumann & James Gratwicke & Harith Akram & Andreas Horn & Dianyou Li & Shikun Zhan & Chao Zhang & Qiang Wang & Ludvic Zrinzo & Tom Foltynie &, 2021. "Neural signatures of hyperdirect pathway activity in Parkinson’s disease," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geeraert, Joke & Rocha, Luis E.C. & Vandeviver, Christophe, 2024. "The impact of violent behavior on co-offender selection: Evidence of behavioral homophily," Journal of Criminal Justice, Elsevier, vol. 94(C).
    2. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    4. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    5. Dennis Bontempi & Leonard Nuernberg & Suraj Pai & Deepa Krishnaswamy & Vamsi Thiriveedhi & Ahmed Hosny & Raymond H. Mak & Keyvan Farahani & Ron Kikinis & Andrey Fedorov & Hugo J. W. L. Aerts, 2024. "End-to-end reproducible AI pipelines in radiology using the cloud," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Pablo García-Risueño, 2025. "Historical Simulation Systematically Underestimates the Expected Shortfall," JRFM, MDPI, vol. 18(1), pages 1-12, January.
    7. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Ali Rezaei & Virág Kocsis-Jutka & Zeynep I. Gunes & Qing Zeng & Georg Kislinger & Franz Bauernschmitt & Huseyin Berkcan Isilgan & Laura R. Parisi & Tuğberk Kaya & Sören Franzenburg & Jonas Koppenbrink, 2025. "Correction of dysregulated lipid metabolism normalizes gene expression in oligodendrocytes and prolongs lifespan in female poly-GA C9orf72 mice," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    9. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Matthew Rosenblatt & Link Tejavibulya & Rongtao Jiang & Stephanie Noble & Dustin Scheinost, 2024. "Data leakage inflates prediction performance in connectome-based machine learning models," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Sayedali Shetab Boushehri & Katharina Essig & Nikolaos-Kosmas Chlis & Sylvia Herter & Marina Bacac & Fabian J. Theis & Elke Glasmacher & Carsten Marr & Fabian Schmich, 2023. "Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Venkat Ram Reddy Ganuthula & Krishna Kumar Balaraman & Nimish Vohra, 2025. "Hedonic Adaptation in the Age of AI: A Perspective on Diminishing Satisfaction Returns in Technology Adoption," Papers 2503.08074, arXiv.org.
    13. Khaled Akkad & David He, 2023. "A dynamic mode decomposition based deep learning technique for prognostics," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2207-2224, June.
    14. Romain Fournier & Zoi Tsangalidou & David Reich & Pier Francesco Palamara, 2023. "Haplotype-based inference of recent effective population size in modern and ancient DNA samples," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Matt C. J. Denton & Luke D. Smith & Wenhao Xu & Jodeci Pugsley & Amelia Toghill & Daniel R. Kattnig, 2024. "Magnetosensitivity of tightly bound radical pairs in cryptochrome is enabled by the quantum Zeno effect," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Laura Portell & Sergi Morera & Helena Ramalhinho, 2022. "Door-to-Door Transportation Services for Reduced Mobility Population: A Descriptive Analytics of the City of Barcelona," IJERPH, MDPI, vol. 19(8), pages 1-20, April.
    17. Caroline Haimerl & Douglas A. Ruff & Marlene R. Cohen & Cristina Savin & Eero P. Simoncelli, 2023. "Targeted V1 comodulation supports task-adaptive sensory decisions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Mite Mijalkov & Ludvig Storm & Blanca Zufiria-Gerbolés & Dániel Veréb & Zhilei Xu & Anna Canal-Garcia & Jiawei Sun & Yu-Wei Chang & Hang Zhao & Emiliano Gómez-Ruiz & Massimiliano Passaretti & Sara Gar, 2025. "Computational memory capacity predicts aging and cognitive decline," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    19. Pullinger, Martin & Zapata-Webborn, Ellen & Kilgour, Jonathan & Elam, Simon & Few, Jessica & Goddard, Nigel & Hanmer, Clare & McKenna, Eoghan & Oreszczyn, Tadj & Webb, Lynda, 2024. "Capturing variation in daily energy demand profiles over time with cluster analysis in British homes (September 2019 – August 2022)," Applied Energy, Elsevier, vol. 360(C).
    20. Chung-Yuan Chang & Yen-Wei Feng & Tejender Singh Rawat & Shih-Wei Chen & Albert Shihchun Lin, 2025. "Optimization of laser annealing parameters based on bayesian reinforcement learning," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2479-2492, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58825-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.