IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57995-0.html
   My bibliography  Save this article

Computational memory capacity predicts aging and cognitive decline

Author

Listed:
  • Mite Mijalkov

    (Karolinska Institutet)

  • Ludvig Storm

    (Goteborg University)

  • Blanca Zufiria-Gerbolés

    (Karolinska Institutet)

  • Dániel Veréb

    (Karolinska Institutet)

  • Zhilei Xu

    (Karolinska Institutet)

  • Anna Canal-Garcia

    (Karolinska Institutet)

  • Jiawei Sun

    (Karolinska Institutet)

  • Yu-Wei Chang

    (Goteborg University)

  • Hang Zhao

    (Goteborg University)

  • Emiliano Gómez-Ruiz

    (Goteborg University)

  • Massimiliano Passaretti

    (Karolinska Institutet)

  • Sara Garcia-Ptacek

    (Karolinska Institutet
    Theme Inflammation and Aging. Aging Brain Theme. Karolinska University Hospital)

  • Miia Kivipelto

    (Karolinska Institutet
    University of Eastern Finland)

  • Per Svenningsson

    (Karolinska Institutet)

  • Henrik Zetterberg

    (the Sahlgrenska Academy at the University of Gothenburg
    Sahlgrenska University Hospital
    Queen Square
    UK Dementia Research Institute at UCL)

  • Heidi Jacobs

    (Maastricht University
    Massachusetts General Hospital)

  • Kathy Lüdge

    (Weimarer Straße 25)

  • Daniel Brunner

    (CNRS)

  • Bernhard Mehlig

    (Goteborg University)

  • Giovanni Volpe

    (Goteborg University)

  • Joana B. Pereira

    (Karolinska Institutet)

Abstract

Memory is a crucial cognitive function that deteriorates with age. However, this ability is normally assessed using cognitive tests instead of the architecture of brain networks. Here, we use reservoir computing, a recurrent neural network computing paradigm, to assess the linear memory capacities of neural-network reservoirs extracted from brain anatomical connectivity data in a lifespan cohort of 636 individuals. The computational memory capacity emerges as a robust marker of aging, being associated with resting-state functional activity, white matter integrity, locus coeruleus signal intensity, and cognitive performance. We replicate our findings in an independent cohort of 154 young and 72 old individuals. By linking the computational memory capacity of the brain network with cognition, brain function and integrity, our findings open new pathways to employ reservoir computing to investigate aging and age-related disorders.

Suggested Citation

  • Mite Mijalkov & Ludvig Storm & Blanca Zufiria-Gerbolés & Dániel Veréb & Zhilei Xu & Anna Canal-Garcia & Jiawei Sun & Yu-Wei Chang & Hang Zhao & Emiliano Gómez-Ruiz & Massimiliano Passaretti & Sara Gar, 2025. "Computational memory capacity predicts aging and cognitive decline," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57995-0
    DOI: 10.1038/s41467-025-57995-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57995-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57995-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    2. Kathy Y. Liu & Rogier A. Kievit & Kamen A. Tsvetanov & Matthew J. Betts & Emrah Düzel & James B. Rowe & Robert Howard & Dorothea Hämmerer, 2020. "Noradrenergic-dependent functions are associated with age-related locus coeruleus signal intensity differences," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Denise C. Park & Sara B. Festini, 2017. "Theories of Memory and Aging: A Look at the Past and a Glimpse of the Future," The Journals of Gerontology: Series B, The Gerontological Society of America, vol. 72(1), pages 82-90.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan Wang & L. Jeff Hong, 2023. "Large-Scale Inventory Optimization: A Recurrent Neural Networks–Inspired Simulation Approach," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 196-215, January.
    2. Geeraert, Joke & Rocha, Luis E.C. & Vandeviver, Christophe, 2024. "The impact of violent behavior on co-offender selection: Evidence of behavioral homophily," Journal of Criminal Justice, Elsevier, vol. 94(C).
    3. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Claudia Quinteros-Cartaya & Guillermo Solorio-Magaña & Francisco Javier Núñez-Cornú & Felipe de Jesús Escalona-Alcázar & Diana Núñez, 2023. "Microearthquakes in the Guadalajara Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2797-2818, April.
    5. Richard E. Hicks & Victoria E. Alexander & Mark Bahr, 2018. "Explicit and Implicit Memory Loss in Aging," International Journal of Psychological Studies, Canadian Center of Science and Education, vol. 10(3), pages 1-40, September.
    6. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Philipp Fey & Daniel Ludwig Weber & Jannik Stebani & Philipp Mörchel & Peter Jakob & Jan Hansmann & Karl-Heinz Hiller & Daniel Haddad, 2023. "Non-destructive classification of unlabeled cells: Combining an automated benchtop magnetic resonance scanner and artificial intelligence," PLOS Computational Biology, Public Library of Science, vol. 19(2), pages 1-31, February.
    8. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    10. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    11. Kiran Krishnamachari & Dylan Lu & Alexander Swift-Scott & Anuar Yeraliyev & Kayla Lee & Weitai Huang & Sim Ngak Leng & Anders Jacobsen Skanderup, 2022. "Accurate somatic variant detection using weakly supervised deep learning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Larissa Samaan & Leonie Klock & Sandra Weber & Mirjam Reidick & Leonie Ascone & Simone Kühn, 2024. "Low-Level Visual Features of Window Views Contribute to Perceived Naturalness and Mental Health Outcomes," IJERPH, MDPI, vol. 21(5), pages 1-35, May.
    13. Dennis Bontempi & Leonard Nuernberg & Suraj Pai & Deepa Krishnaswamy & Vamsi Thiriveedhi & Ahmed Hosny & Raymond H. Mak & Keyvan Farahani & Ron Kikinis & Andrey Fedorov & Hugo J. W. L. Aerts, 2024. "End-to-end reproducible AI pipelines in radiology using the cloud," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Pablo García-Risueño, 2025. "Historical Simulation Systematically Underestimates the Expected Shortfall," JRFM, MDPI, vol. 18(1), pages 1-12, January.
    15. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Ali Rezaei & Virág Kocsis-Jutka & Zeynep I. Gunes & Qing Zeng & Georg Kislinger & Franz Bauernschmitt & Huseyin Berkcan Isilgan & Laura R. Parisi & Tuğberk Kaya & Sören Franzenburg & Jonas Koppenbrink, 2025. "Correction of dysregulated lipid metabolism normalizes gene expression in oligodendrocytes and prolongs lifespan in female poly-GA C9orf72 mice," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    17. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Matthew Rosenblatt & Link Tejavibulya & Rongtao Jiang & Stephanie Noble & Dustin Scheinost, 2024. "Data leakage inflates prediction performance in connectome-based machine learning models," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Jackie Grant & Mark Hindmarsh & Sergey E. Koposov, 2022. "The distribution of loss to future USS pensions due to the UUK cuts of April 2022," Papers 2206.06201, arXiv.org.
    20. Sayedali Shetab Boushehri & Katharina Essig & Nikolaos-Kosmas Chlis & Sylvia Herter & Marina Bacac & Fabian J. Theis & Elke Glasmacher & Carsten Marr & Fabian Schmich, 2023. "Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57995-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.