IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58491-1.html
   My bibliography  Save this article

Bulk Bi-Sb polycrystals underpinned by high electron/phonon mean free path ratio enabling thermoelectric cooling under 77 K

Author

Listed:
  • Xiaowei Wu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhen Fan

    (Chinese Academy of Sciences)

  • Hangtian Zhu

    (Chinese Academy of Sciences)

  • Tianyu Wang

    (Huazhong University of Science and Technology)

  • Meng Liu

    (Chinese Academy of Sciences)

  • Jun Li

    (Chinese Academy of Sciences)

  • Nan Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qiulin Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhen Lu

    (Chinese Academy of Sciences)

  • Guodong Li

    (Chinese Academy of Sciences)

  • Xin Qian

    (Huazhong University of Science and Technology)

  • Te-Huan Liu

    (Huazhong University of Science and Technology)

  • Ronggui Yang

    (Peking University)

  • Xiaoyan Niu

    (Hebei University)

  • Qi Zhao

    (Hebei University)

  • Zhiliang Li

    (Hebei University)

  • Shufang Wang

    (Hebei University)

  • Huaizhou Zhao

    (Chinese Academy of Sciences)

Abstract

Bi-Sb alloy, as a promising thermoelectric material at cryogenic temperatures, has seen stagnant progress due to challenges in understanding the transport behaviors of energy carriers, and difficulties in synthesizing high-homogeneity, large-grain samples. In this study, an inherent electron-phonon decoupling in Bi-Sb is revealed using the first-principles calculations based on the virtual crystal approximation. The mean free path of the dominant electrons (λele ~ 103 nm) is found of two orders of magnitude larger than that of phonons (λph ~ 101 nm), suggesting that a grain size greater than 10 μm would be favorable for thermoelectric transport. Bulk Bi-Sb polycrystals with highly elemental homogeneity and large grain size (~80 μm) are successfully synthesized through an ultra-fast quenching method combined with annealing, delivering superior thermoelectric performance. A prototype module based on the Bi0.88Sb0.12 polycrystal, with a ZTmax of 0.48 at 150 K, is fabricated and demonstrates a ΔTmax of 4 K at a Th of 75 K. This marks the first report of n-p paired thermoelectric cooling modules operating below liquid nitrogen temperature.

Suggested Citation

  • Xiaowei Wu & Zhen Fan & Hangtian Zhu & Tianyu Wang & Meng Liu & Jun Li & Nan Chen & Qiulin Liu & Zhen Lu & Guodong Li & Xin Qian & Te-Huan Liu & Ronggui Yang & Xiaoyan Niu & Qi Zhao & Zhiliang Li & Sh, 2025. "Bulk Bi-Sb polycrystals underpinned by high electron/phonon mean free path ratio enabling thermoelectric cooling under 77 K," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58491-1
    DOI: 10.1038/s41467-025-58491-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58491-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58491-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuan Meng & Ziyang Zhang & Hanxiang Wu & Ruiyi Wu & Jianghan Wu & Haolun Wang & Qibing Pei, 2020. "A cascade electrocaloric cooling device for large temperature lift," Nature Energy, Nature, vol. 5(12), pages 996-1002, December.
    2. D. Hsieh & D. Qian & L. Wray & Y. Xia & Y. S. Hor & R. J. Cava & M. Z. Hasan, 2008. "A topological Dirac insulator in a quantum spin Hall phase," Nature, Nature, vol. 452(7190), pages 970-974, April.
    3. Li Zhong & Jiangwei Wang & Hongwei Sheng & Ze Zhang & Scott X. Mao, 2014. "Formation of monatomic metallic glasses through ultrafast liquid quenching," Nature, Nature, vol. 512(7513), pages 177-180, August.
    4. Pourkiaei, Seyed Mohsen & Ahmadi, Mohammad Hossein & Sadeghzadeh, Milad & Moosavi, Soroush & Pourfayaz, Fathollah & Chen, Lingen & Pour Yazdi, Mohammad Arab & Kumar, Ravinder, 2019. "Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials," Energy, Elsevier, vol. 186(C).
    5. Mamur, Hayati & Bhuiyan, M.R.A. & Korkmaz, Fatih & Nil, Mustafa, 2018. "A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4159-4169.
    6. Noriki Terada & Hiroaki Mamiya, 2021. "High-efficiency magnetic refrigeration using holmium," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    7. Shixian Zhang & Quanling Yang & Chenjian Li & Yuheng Fu & Huaqing Zhang & Zhiwei Ye & Xingnan Zhou & Qi Li & Tao Wang & Shan Wang & Wenqing Zhang & Chuanxi Xiong & Qing Wang, 2022. "Solid-state cooling by elastocaloric polymer with uniform chain-lengths," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Nan Chen & Hangtian Zhu & Guodong Li & Zhen Fan & Xiaofan Zhang & Jiawei Yang & Tianbo Lu & Qiulin Liu & Xiaowei Wu & Yuan Yao & Youguo Shi & Huaizhou Zhao, 2023. "Improved figure of merit (z) at low temperatures for superior thermoelectric cooling in Mg3(Bi,Sb)2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo d’Angelo & Carmen Galassi & Nora Lecis, 2023. "Thermoelectric Materials and Applications: A Review," Energies, MDPI, vol. 16(17), pages 1-50, September.
    2. Song Lv & Zuoqin Qian & Dengyun Hu & Xiaoyuan Li & Wei He, 2020. "A Comprehensive Review of Strategies and Approaches for Enhancing the Performance of Thermoelectric Module," Energies, MDPI, vol. 13(12), pages 1-24, June.
    3. Hengwei Luan & Xin Zhang & Hongyu Ding & Fei Zhang & J. H. Luan & Z. B. Jiao & Yi-Chieh Yang & Hengtong Bu & Ranbin Wang & Jialun Gu & Chunlin Shao & Qing Yu & Yang Shao & Qiaoshi Zeng & Na Chen & C. , 2022. "High-entropy induced a glass-to-glass transition in a metallic glass," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Fatih Selimefendigil & Hakan F. Oztop & Mikhail A. Sheremet, 2021. "Thermoelectric Generation with Impinging Nano-Jets," Energies, MDPI, vol. 14(2), pages 1-24, January.
    5. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    6. Xiaowen Sun & Yuedong Yan & Man Kang & Weiyun Zhao & Kaifen Yan & He Wang & Ranran Li & Shijie Zhao & Xiaoshe Hua & Boyi Wang & Weifeng Zhang & Yuan Deng, 2024. "General strategy for developing thick-film micro-thermoelectric coolers from material fabrication to device integration," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Ares de Parga-Regalado, A.M. & Ramírez-Moreno, M.A. & Angulo-Brown, F., 2023. "A comparative thermodynamic and thermoeconomic analysis between two ecological regimes for the Novikov energy converter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    8. Xing Li & Qi Zhu & Youran Hong & He Zheng & Jian Wang & Jiangwei Wang & Ze Zhang, 2022. "Revealing the pulse-induced electroplasticity by decoupling electron wind force," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Kaiyuan Shi & Xiao Dong & Zhisheng Zhao & Lei Su & Cheng Ji & Bing Li & Jiaqing Zhang & Xingbang Dong & Pu Qiao & Xin Zhang & Haotian Yang & Guoqiang Yang & Eugene Gregoryanz & Ho-kwang Mao, 2025. "Sulfur chains glass formed by fast compression," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    10. Chen, Lingen & Lorenzini, Giulio, 2023. "Heating load, COP and exergetic efficiency optimizations for TEG-TEH combined thermoelectric device with Thomson effect and external heat transfer," Energy, Elsevier, vol. 270(C).
    11. Maleki, Yaser & Pourfayaz, Fathollah & Mehrpooya, Mehdi, 2022. "Experimental study of a novel hybrid photovoltaic/thermal and thermoelectric generators system with dual phase change materials," Renewable Energy, Elsevier, vol. 201(P2), pages 202-215.
    12. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    13. Liu, Haowen & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli & Shen, Chao, 2023. "Investigation of the impact of the thermoelectric geometry on the cooling performance and thermal—mechanic characteristics in a thermoelectric cooler," Energy, Elsevier, vol. 267(C).
    14. Beltrán-Pitarch, Braulio & Maassen, Jesse & García-Cañadas, Jorge, 2021. "Comprehensive impedance spectroscopy equivalent circuit of a thermoelectric device which includes the internal thermal contact resistances," Applied Energy, Elsevier, vol. 299(C).
    15. Liao, Tianjun & He, Qijiao & Xu, Qidong & Dai, Yawen & Cheng, Chun & Ni, Meng, 2021. "Coupling properties and parametric optimization of a photovoltaic panel driven thermoelectric refrigerators system," Energy, Elsevier, vol. 220(C).
    16. Xu, Haowei & Zhang, Qiang & Yi, Longbing & Huang, Shaolin & Yang, Hao & Li, Yanan & Guo, Zhe & Hu, Haoyang & Sun, Peng & Tan, Xiaojian & Liu, Guo-qiang & Song, Kun & Jiang, Jun, 2022. "High performance of Bi2Te3-based thermoelectric generator owing to pressure in fabrication process," Applied Energy, Elsevier, vol. 326(C).
    17. Zhaochun Shi & Guohua Wang & Chunli Liu & Qiang Lv & Baoli Gong & Yingchao Zhang & Yuying Yan, 2023. "Optimizing the Transient Performance of Thermoelectric Generator with PCM by Taguchi Method," Energies, MDPI, vol. 16(2), pages 1-16, January.
    18. He, Junjie & Chu, Wenxiao & Wang, Qiuwang, 2025. "Applications of low melting point alloy for electronic thermal management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    19. Zhongqiang Chen & Hongsong Qiu & Xinjuan Cheng & Jizhe Cui & Zuanming Jin & Da Tian & Xu Zhang & Kankan Xu & Ruxin Liu & Wei Niu & Liqi Zhou & Tianyu Qiu & Yequan Chen & Caihong Zhang & Xiaoxiang Xi &, 2024. "Defect-induced helicity dependent terahertz emission in Dirac semimetal PtTe2 thin films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Ming-Ding Li & Xiao-Quan Shen & Xin Chen & Jia-Ming Gan & Fang Wang & Jian Li & Xiao-Liang Wang & Qun-Dong Shen, 2022. "Thermal management of chips by a device prototype using synergistic effects of 3-D heat-conductive network and electrocaloric refrigeration," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58491-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.