IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58125-6.html
   My bibliography  Save this article

Sensing flow gradients is necessary for learning autonomous underwater navigation

Author

Listed:
  • Yusheng Jiao

    (University of Southern California)

  • Haotian Hang

    (University of Southern California)

  • Josh Merel

    (Fauna Robotics)

  • Eva Kanso

    (University of Southern California
    University of Southern California)

Abstract

Aquatic animals are much better at underwater navigation than robotic vehicles. Robots face major challenges in deep water because of their limited access to global positioning signals and flow maps. These limitations, and the changing nature of water currents, support the use of reinforcement learning approaches, where the navigator learns through trial-and-error interactions with the flow environment. But is it feasible to learn underwater navigation in the agent’s Umwelt, without any land references? Here, we tasked an artificial swimmer with learning to reach a specific destination in unsteady flows by relying solely on egocentric observations, collected through on-board flow sensors in the agent’s body frame, with no reference to a geocentric inertial frame. We found that while sensing local flow velocities is sufficient for geocentric navigation, successful egocentric navigation requires additional information of local flow gradients. Importantly, egocentric navigation strategies obey rotational symmetry and are more robust in unfamiliar conditions and flows not experienced during training. Our work expands underwater robot-centric learning, helps explain why aquatic organisms have arrays of flow sensors that detect gradients, and provides physics-based guidelines for transfer learning of learned policies to unfamiliar and diverse flow environments.

Suggested Citation

  • Yusheng Jiao & Haotian Hang & Josh Merel & Eva Kanso, 2025. "Sensing flow gradients is necessary for learning autonomous underwater navigation," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58125-6
    DOI: 10.1038/s41467-025-58125-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58125-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58125-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Efstathios Bakolas & Panagiotis Tsiotras, 2013. "Optimal Synthesis of the Zermelo–Markov–Dubins Problem in a Constant Drift Field," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 469-492, February.
    2. John C. Montgomery & Cindy F. Baker & Alexander G. Carton, 1997. "The lateral line can mediate rheotaxis in fish," Nature, Nature, vol. 389(6654), pages 960-963, October.
    3. Pablo Oteiza & Iris Odstrcil & George Lauder & Ruben Portugues & Florian Engert, 2017. "A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish," Nature, Nature, vol. 547(7664), pages 445-448, July.
    4. Marc G. Bellemare & Salvatore Candido & Pablo Samuel Castro & Jun Gong & Marlos C. Machado & Subhodeep Moitra & Sameera S. Ponda & Ziyu Wang, 2020. "Autonomous navigation of stratospheric balloons using reinforcement learning," Nature, Nature, vol. 588(7836), pages 77-82, December.
    5. Antoine Cully & Jeff Clune & Danesh Tarapore & Jean-Baptiste Mouret, 2015. "Robots that can adapt like animals," Nature, Nature, vol. 521(7553), pages 503-507, May.
    6. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    7. Gautam Reddy & Jerome Wong-Ng & Antonio Celani & Terrence J. Sejnowski & Massimo Vergassola, 2018. "Glider soaring via reinforcement learning in the field," Nature, Nature, vol. 562(7726), pages 236-239, October.
    8. Pablo Oteiza & Iris Odstrcil & George Lauder & Ruben Portugues & Florian Engert, 2017. "Erratum: A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish," Nature, Nature, vol. 549(7671), pages 292-292, September.
    9. Liang Li & Máté Nagy & Jacob M. Graving & Joseph Bak-Coleman & Guangming Xie & Iain D. Couzin, 2020. "Vortex phase matching as a strategy for schooling in robots and in fish," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    10. Derek P. Tittensor & Camilo Mora & Walter Jetz & Heike K. Lotze & Daniel Ricard & Edward Vanden Berghe & Boris Worm, 2010. "Global patterns and predictors of marine biodiversity across taxa," Nature, Nature, vol. 466(7310), pages 1098-1101, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel K. H. Sy & Danny C. W. Chan & Roy C. H. Chan & Jing Lyu & Zhongqi Li & Kenneth K. Y. Wong & Chung Hang Jonathan Choi & Vincent C. T. Mok & Hei-Ming Lai & Owen Randlett & Yu Hu & Ho Ko, 2023. "An optofluidic platform for interrogating chemosensory behavior and brainwide neural representation in larval zebrafish," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Suzie Grondin & Arthur Charpentier & Philipp Ratz, 2025. "Beyond Human Intervention: Algorithmic Collusion through Multi-Agent Learning Strategies," Papers 2501.16935, arXiv.org.
    3. Joshua D. McGraw & Donsuk Lee & Justin N. Wood, 2024. "Parallel development of social behavior in biological and artificial fish," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Biemann, Marco & Scheller, Fabian & Liu, Xiufeng & Huang, Lizhen, 2021. "Experimental evaluation of model-free reinforcement learning algorithms for continuous HVAC control," Applied Energy, Elsevier, vol. 298(C).
    5. Malte Reinschmidt & József Fortágh & Andreas Günther & Valentin V. Volchkov, 2024. "Reinforcement learning in cold atom experiments," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Sridharan, Vamsi Krishna & Jackson, Doug & Hein, Andrew M. & Perry, Russell W. & Pope, Adam C. & Hendrix, Noble & Danner, Eric M. & Lindley, Steven T., 2023. "Simulating the migration dynamics of juvenile salmonids through rivers and estuaries using a hydrodynamically driven enhanced particle tracking model," Ecological Modelling, Elsevier, vol. 482(C).
    7. Yoav Flato & Roi Harel & Aviv Tamar & Ran Nathan & Tsevi Beatus, 2024. "Revealing principles of autonomous thermal soaring in windy conditions using vulture-inspired deep reinforcement-learning," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Hongxin Yu & Lihui Zhang & Meng Zhang & Fengyue Jin & Yibing Wang, 2024. "Coordinated Ramp Metering Considering the Dynamics of Mixed-Autonomy Traffic," Sustainability, MDPI, vol. 16(22), pages 1-26, November.
    9. Tulika Saha & Sriparna Saha & Pushpak Bhattacharyya, 2020. "Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    10. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    11. Lixiang Zhang & Yan Yan & Yaoguang Hu, 2024. "Deep reinforcement learning for dynamic scheduling of energy-efficient automated guided vehicles," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 3875-3888, December.
    12. Imen Azzouz & Wiem Fekih Hassen, 2023. "Optimization of Electric Vehicles Charging Scheduling Based on Deep Reinforcement Learning: A Decentralized Approach," Energies, MDPI, vol. 16(24), pages 1-18, December.
    13. Benjamin Heinbach & Peter Burggräf & Johannes Wagner, 2024. "gym-flp: A Python Package for Training Reinforcement Learning Algorithms on Facility Layout Problems," SN Operations Research Forum, Springer, vol. 5(1), pages 1-26, March.
    14. Jacob W. Crandall & Mayada Oudah & Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael A. Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," TSE Working Papers 17-806, Toulouse School of Economics (TSE).
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," IAST Working Papers 17-68, Institute for Advanced Study in Toulouse (IAST).
    15. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    16. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    17. Woo Jae Byun & Bumkyu Choi & Seongmin Kim & Joohyun Jo, 2023. "Practical Application of Deep Reinforcement Learning to Optimal Trade Execution," FinTech, MDPI, vol. 2(3), pages 1-16, June.
    18. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    19. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    20. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58125-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.